On Tensor Products of $l$-Operators and $bo$-Operators
Matematičeskie zametki, Tome 68 (2000) no. 5, pp. 756-760.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the tensor product of two linear operators is a cone summing operator (respectively, order bounded operator) if and only if both operators are cone summing (respectively, order bounded).
@article{MZM_2000_68_5_a10,
     author = {V. T. Khudalov},
     title = {On {Tensor} {Products} of $l${-Operators} and $bo${-Operators}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {756--760},
     publisher = {mathdoc},
     volume = {68},
     number = {5},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2000_68_5_a10/}
}
TY  - JOUR
AU  - V. T. Khudalov
TI  - On Tensor Products of $l$-Operators and $bo$-Operators
JO  - Matematičeskie zametki
PY  - 2000
SP  - 756
EP  - 760
VL  - 68
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2000_68_5_a10/
LA  - ru
ID  - MZM_2000_68_5_a10
ER  - 
%0 Journal Article
%A V. T. Khudalov
%T On Tensor Products of $l$-Operators and $bo$-Operators
%J Matematičeskie zametki
%D 2000
%P 756-760
%V 68
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2000_68_5_a10/
%G ru
%F MZM_2000_68_5_a10
V. T. Khudalov. On Tensor Products of $l$-Operators and $bo$-Operators. Matematičeskie zametki, Tome 68 (2000) no. 5, pp. 756-760. http://geodesic.mathdoc.fr/item/MZM_2000_68_5_a10/

[1] Khudalov V. T., “O sovpadenii dvukh krossnorm, svyazannykh s poryadkom”, Zap. nauch. seminarov LOMI AN SSSR, 92, Nauka, L., 1979, 307–311 | MR | Zbl

[2] Schatten R., A Theory of Cross-Spaces, Princeton, 1950

[3] Wittstock G., “Ordered normed tensor products”, Lecture Notes in Phys., no. 29, 1974, 67–84 | MR | Zbl

[4] Holub J., “Tensor product mappings”, Math. Ann., 188 (1970), 1–12 | DOI | MR | Zbl