On Tensor Products of $l$-Operators and $bo$-Operators
Matematičeskie zametki, Tome 68 (2000) no. 5, pp. 756-760
Cet article a éte moissonné depuis la source Math-Net.Ru
It is proved that the tensor product of two linear operators is a cone summing operator (respectively, order bounded operator) if and only if both operators are cone summing (respectively, order bounded).
@article{MZM_2000_68_5_a10,
author = {V. T. Khudalov},
title = {On {Tensor} {Products} of $l${-Operators} and $bo${-Operators}},
journal = {Matemati\v{c}eskie zametki},
pages = {756--760},
year = {2000},
volume = {68},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2000_68_5_a10/}
}
V. T. Khudalov. On Tensor Products of $l$-Operators and $bo$-Operators. Matematičeskie zametki, Tome 68 (2000) no. 5, pp. 756-760. http://geodesic.mathdoc.fr/item/MZM_2000_68_5_a10/
[1] Khudalov V. T., “O sovpadenii dvukh krossnorm, svyazannykh s poryadkom”, Zap. nauch. seminarov LOMI AN SSSR, 92, Nauka, L., 1979, 307–311 | MR | Zbl
[2] Schatten R., A Theory of Cross-Spaces, Princeton, 1950
[3] Wittstock G., “Ordered normed tensor products”, Lecture Notes in Phys., no. 29, 1974, 67–84 | MR | Zbl
[4] Holub J., “Tensor product mappings”, Math. Ann., 188 (1970), 1–12 | DOI | MR | Zbl