On the Simultaneous Triangulability of Matrices
Matematičeskie zametki, Tome 68 (2000) no. 5, pp. 648-652.

Voir la notice de l'article provenant de la source Math-Net.Ru

Two necessary and sufficient criteria for the simultaneous triangulability of two complex matrices are established. Both of them admit a finite verification procedure. To prove the first criterion, classical theorems from Lie algebra theory are used, and known sufficient conditions of triangulability are also given a natural interpretation in terms of this theory. The other criterion is discussed in the framework of the associative algebras. Here the decisive fact is the Wedderburn theorem on the nilpotence of a finite-dimensional nilalgebra.
@article{MZM_2000_68_5_a1,
     author = {Yu. A. Alpin and N. A. Koreshkov},
     title = {On the {Simultaneous} {Triangulability} of {Matrices}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {648--652},
     publisher = {mathdoc},
     volume = {68},
     number = {5},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2000_68_5_a1/}
}
TY  - JOUR
AU  - Yu. A. Alpin
AU  - N. A. Koreshkov
TI  - On the Simultaneous Triangulability of Matrices
JO  - Matematičeskie zametki
PY  - 2000
SP  - 648
EP  - 652
VL  - 68
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2000_68_5_a1/
LA  - ru
ID  - MZM_2000_68_5_a1
ER  - 
%0 Journal Article
%A Yu. A. Alpin
%A N. A. Koreshkov
%T On the Simultaneous Triangulability of Matrices
%J Matematičeskie zametki
%D 2000
%P 648-652
%V 68
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2000_68_5_a1/
%G ru
%F MZM_2000_68_5_a1
Yu. A. Alpin; N. A. Koreshkov. On the Simultaneous Triangulability of Matrices. Matematičeskie zametki, Tome 68 (2000) no. 5, pp. 648-652. http://geodesic.mathdoc.fr/item/MZM_2000_68_5_a1/

[1] McCoy N. H., “On the characteristic roots of matrix polynomials”, Bull. Amer. Math. Soc., 42 (1936), 592–600 | DOI | Zbl

[2] Khorn R., Dzhonson Ch., Matrichnyi analiz, Mir, M., 1989

[3] Ikramov Kh. D., Saveleva N. V., Chugunov V. N., “O ratsionalnykh kriteriyakh suschestvovaniya obschikh sobstvennykh vektorov ili invariantnykh podprostranstv”, Programmirovanie, 1997, no. 3, 43–57 | MR | Zbl

[4] Drazin M. P., Dungey J. W., Gruenberg K. W., “Some theorems on commutative matrices”, J. London Math. Soc., 26 (1951), 221–228 | DOI | MR | Zbl

[5] Prasolov V. V., Zadachi i teoremy lineinoi algebry, Nauka, M., 1996 | Zbl

[6] Bakhturin Yu. A., Osnovnye struktury sovremennoi algebry, Nauka, M., 1990 | Zbl

[7] Kaplanskii I., Algebry Li i lokalno kompaktnye gruppy, Mir, M., 1974

[8] Ikramov Kh. D., Zadachnik po lineinoi algebre, Nauka, M., 1975

[9] McCoy N. H., “On quasi-commutative matrices”, Trans. Amer. Math. Soc., 36 (1934), 327–340 | DOI | MR | Zbl

[10] Drazin M. P., “Some generalizations of matrix commutativity”, Proc. London Math. Soc., 1 (1951), 222–231 | DOI | MR | Zbl

[11] Postnikov M. M., Gruppy i algebry Li, Nauka, M., 1982

[12] Pirs R., Assotsiativnye algebry, Mir, M., 1986

[13] Chebotarev N. G., Vvedenie v teoriyu algebr, Gostekhizdat, M., 1949