On the Spectrum of Cartesian Powers of Classical Automorphisms
Matematičeskie zametki, Tome 68 (2000) no. 5, pp. 643-647.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the following statement: the set of all essential spectral multiplicities of $T^{(n)}=T\times\dots\times T$($n$ times) is $\{n,n(n-1),\dots,n!\}$ on $\{\operatorname{const}\}^\perp$ for Chacon transformations $T$, or, equivalently, the operator $T^{(n)}$ has a simple spectrum on the subspace $C_{\operatorname{sim}}$ of all functions that are invariant with respect to permutations of the coordinates. As an immediate consequence of this fact, we have the disjointness of all convolution powers of the spectral measure for Chacon transformations. If $n=2$, then $T\times T$ has a homogeneous spectrum of multiplicity 2 on $\{\operatorname{const}\}^\perp$, i.e., this is a solution of Rokhlin"s problem for Chacon transformations. Similar statements are considered for other classical automorphisms.
@article{MZM_2000_68_5_a0,
     author = {O. N. Ageev},
     title = {On the {Spectrum} of {Cartesian} {Powers} of {Classical} {Automorphisms}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {643--647},
     publisher = {mathdoc},
     volume = {68},
     number = {5},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2000_68_5_a0/}
}
TY  - JOUR
AU  - O. N. Ageev
TI  - On the Spectrum of Cartesian Powers of Classical Automorphisms
JO  - Matematičeskie zametki
PY  - 2000
SP  - 643
EP  - 647
VL  - 68
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2000_68_5_a0/
LA  - ru
ID  - MZM_2000_68_5_a0
ER  - 
%0 Journal Article
%A O. N. Ageev
%T On the Spectrum of Cartesian Powers of Classical Automorphisms
%J Matematičeskie zametki
%D 2000
%P 643-647
%V 68
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2000_68_5_a0/
%G ru
%F MZM_2000_68_5_a0
O. N. Ageev. On the Spectrum of Cartesian Powers of Classical Automorphisms. Matematičeskie zametki, Tome 68 (2000) no. 5, pp. 643-647. http://geodesic.mathdoc.fr/item/MZM_2000_68_5_a0/

[1] del Junco A., Rahe M., Swanson L., “Chacon's automorphism has minimal self-joinings”, J. Anal. Math., 37 (1980), 276–284 | DOI | MR | Zbl

[2] Park K. K., Robinson E. A., Jr., “The joinings within a class of $\mathbb Z^2$-actions”, J. Anal. Math., 57 (1991), 1–36 | MR | Zbl

[3] Hamachi T., Silva C. E., “On nonsingular Chacon transformations”, Illinois J. Math. (to appear)

[4] Prihod'ko A. A., Ryzhikov V. V., “Disjointness of the convolutions for Chacon's transformations”, Colloq. Math. (to appear)

[5] Ageev O. N., “On ergodic transformations with homogeneous spectrum”, J. Dynamical Cont. Systems, 5:1 (1999), 149–152 | DOI | MR | Zbl

[6] Katok A. B., “Constructions in ergodic theory”, Unpublished Lecture Notes, 7 (1987), 229–248

[7] del Junco A., Rudolph D. J., “A rank one, rigid, simple, prime map”, Ergodic Theory Dynamical Systems, 7 (1987), 229–248 | MR

[8] Kornfeld I. P., Sinai Ya. G., Fomin S. V., Ergodicheskaya teoriya, Nauka, M., 1980 | Zbl