Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2000_68_4_a7, author = {A. Ya. Helemskii and M. E. Polyakov}, title = {Description of morphisms from a {Hilbert} module over a $C^*$-algebra into this algebra}, journal = {Matemati\v{c}eskie zametki}, pages = {560--567}, publisher = {mathdoc}, volume = {68}, number = {4}, year = {2000}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2000_68_4_a7/} }
TY - JOUR AU - A. Ya. Helemskii AU - M. E. Polyakov TI - Description of morphisms from a Hilbert module over a $C^*$-algebra into this algebra JO - Matematičeskie zametki PY - 2000 SP - 560 EP - 567 VL - 68 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2000_68_4_a7/ LA - ru ID - MZM_2000_68_4_a7 ER -
A. Ya. Helemskii; M. E. Polyakov. Description of morphisms from a Hilbert module over a $C^*$-algebra into this algebra. Matematičeskie zametki, Tome 68 (2000) no. 4, pp. 560-567. http://geodesic.mathdoc.fr/item/MZM_2000_68_4_a7/
[1] Helemskii A. Ya., “A description of spatially projective von Neumann algebras”, J. Operator Theory, 32 (1994), 391–398 | MR
[2] Khelemskii A. Ya., “Gomologicheskaya kharakterizatsiya faktorov tipa I”, Dokl. RAN, 344:4 (1995), 454–456 | MR
[3] Khelemskii A. Ya., “Approksimativno konechnomernye C*-algebry s proektivnymi gilbertovymi modulyami, ikh diagrammy Bratteli i $K_0$-gruppy”, Matem. sb., 188:10 (1997), 131–148 | MR | Zbl
[4] Helemskii A. Ya., “Projective homological classification of $C^*$-algebras”, Comm. Algebra, 26 (3) (1998), 977–996 | DOI | MR
[5] Rickart C. E., General Theory of Banach algebras, Van Nostrand, New York, 1960 | Zbl
[6] Merfi Dzh., $C^*$-algebry i teoriya operatorov, Izd-vo Faktorial, M., 1997