Refinement of the almost sure central limit theorem for associated processes
Matematičeskie zametki, Tome 68 (2000) no. 4, pp. 513-522.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_2000_68_4_a2,
     author = {M. A. Vronskii},
     title = {Refinement of the almost sure central limit theorem for associated processes},
     journal = {Matemati\v{c}eskie zametki},
     pages = {513--522},
     publisher = {mathdoc},
     volume = {68},
     number = {4},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2000_68_4_a2/}
}
TY  - JOUR
AU  - M. A. Vronskii
TI  - Refinement of the almost sure central limit theorem for associated processes
JO  - Matematičeskie zametki
PY  - 2000
SP  - 513
EP  - 522
VL  - 68
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2000_68_4_a2/
LA  - ru
ID  - MZM_2000_68_4_a2
ER  - 
%0 Journal Article
%A M. A. Vronskii
%T Refinement of the almost sure central limit theorem for associated processes
%J Matematičeskie zametki
%D 2000
%P 513-522
%V 68
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2000_68_4_a2/
%G ru
%F MZM_2000_68_4_a2
M. A. Vronskii. Refinement of the almost sure central limit theorem for associated processes. Matematičeskie zametki, Tome 68 (2000) no. 4, pp. 513-522. http://geodesic.mathdoc.fr/item/MZM_2000_68_4_a2/

[1] Brosamler G. A., “An almost everywhere central limit theorem”, Math. Proc. Cambridge Phil. Soc., 104 (1988), 561–574 | DOI | MR | Zbl

[2] Shatte P., “On the central limit theorem with almost sure convergence”, Probab. Math. Statist., 11:2 (1991), 237–246

[3] Ibragimov I. A., Lifshits M. A., “O predelnykh teoremakh tipa “pochti navernoe””, Teoriya veroyatn. i ee primen., 44:2 (1999), 328–350 | MR | Zbl

[4] Ibragimov I., Lifshits M., “On the convergence of generalized moments in almost sure central limit theorem”, Statist. Probab. Letters, 40 (1998), 343–351 | DOI | MR | Zbl

[5] Csörgö M., Hórvath L., “Invariance principles for logarithmic averages”, Math. Proc. Cambridge Phil. Soc., 112:1 (1992), 195–205 | DOI | MR | Zbl

[6] Esary J., Proschan F., Walkup D., “Association of random variables with applications”, Ann. Math. Statist., 38 (1967), 1466–1474 | DOI | MR | Zbl

[7] Cox J. T., Grimmett G., “Central limit theorem for associated random variables and the percolation model”, Ann. Probab., 12 (1984), 514–528 | DOI | MR | Zbl

[8] Newman C. M., “Normal fluctuations and FKG inequalities”, Commun. Math. Phys., 74 (1980), 119–128 | DOI | MR | Zbl

[9] Bulinski A. V., Keane M. S., “Invariance principle for associated fields”, J. of Math., 1:3 (1996), 10–17

[10] Bulinskii A. V., Shabanovich E., “Asimptoticheskoe povedenie nekotorykh funktsionalov ot polozhitelno i otritsatelno zavisimykh sluchainykh polei”, Fundament. i prikl. matem., 4:2 (1998), 479–492 | MR | Zbl

[11] Matula P., “On the almost sure central limit theorem for associated random variables”, Probab. Math. Statist., 18:2 (1998), 411–416 | MR | Zbl

[12] Shiryaev A. N., Veroyatnost, Nauka, M., 1989

[13] Bulinskii A. V., Vronskii M. A., “Statisticheskii variant tsentralnoi predelnoi teoremy dlya assotsiirovannykh sluchainykh polei”, Fundament. i prikl. matem., 2:4 (1996), 999–1018 | MR | Zbl