On the complete convergence of sums of negatively associated random variables
Matematičeskie zametki, Tome 68 (2000) no. 3, pp. 411-420.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_2000_68_3_a9,
     author = {A. E. Mikusheva},
     title = {On the complete convergence of sums of negatively associated random variables},
     journal = {Matemati\v{c}eskie zametki},
     pages = {411--420},
     publisher = {mathdoc},
     volume = {68},
     number = {3},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2000_68_3_a9/}
}
TY  - JOUR
AU  - A. E. Mikusheva
TI  - On the complete convergence of sums of negatively associated random variables
JO  - Matematičeskie zametki
PY  - 2000
SP  - 411
EP  - 420
VL  - 68
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2000_68_3_a9/
LA  - ru
ID  - MZM_2000_68_3_a9
ER  - 
%0 Journal Article
%A A. E. Mikusheva
%T On the complete convergence of sums of negatively associated random variables
%J Matematičeskie zametki
%D 2000
%P 411-420
%V 68
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2000_68_3_a9/
%G ru
%F MZM_2000_68_3_a9
A. E. Mikusheva. On the complete convergence of sums of negatively associated random variables. Matematičeskie zametki, Tome 68 (2000) no. 3, pp. 411-420. http://geodesic.mathdoc.fr/item/MZM_2000_68_3_a9/

[1] Hsu P. L., Robbins H., “Complete convergence and the law of large numbers”, Proc. Nat. Acad. Sci., 33 (1947), 25–31 | DOI | MR | Zbl

[2] Erdös P., “On a theorem of Hsu and Robbins”, Ann. Math. Statist., 20 (1949), 286–291 | DOI | MR | Zbl

[3] Hu T. C., Moricz F., Taylor R. L., “Strong laws of large numbers for arrays of rowwise independent random variables”, Acta Math. Hungar., 54 (1992), 153–162 | MR

[4] Asmussen S., Kurtz T. G., “Necessary and sufficient conditions for complete convergence in the law of large numbers”, Ann. Probab., 8:1 (1980), 176–182 | DOI | MR | Zbl

[5] Gut A., “On complete convergence in the law of large numbers for subsequences”, Ann. Probab., 13:4 (1985), 1286–1291 | DOI | Zbl

[6] Gut A., “Complete convergence for arrays”, Periodica Math. Hungar., 25:1 (1992), 51–75 | DOI | Zbl

[7] Kuczmaszewska A., Szynal D., “On the Hsu–Robbins law of large numbers for subsequences”, Bull. Polish Acad. Sci. Math., 36:1 (1988), 69–79 | Zbl

[8] Bulinski A. V., “Limit laws for arrays”, Int. Congress of Mathematicians, Abstracts of communications, Berlin, 1998, 24

[9] Bulinski A. V., Mikusheva A. E., “SLLN and other laws for arrays”, 7th Vilnius Conference on Probab. Theory, Abstracts of communications, 1998, 167

[10] Mikusheva A. E., “Zakon bolshikh chisel i logarifmicheskii zakon v skheme serii”, Fundament. i prikl. matem. (to appear)

[11] Joag-Dev K., Proschan F., “Negative association of random variables with applications”, Ann. Statist., 11 (1983), 286–295 | DOI

[12] Su C., “A theorem of Hsu–Robbins type for negatively associated sequence”, Chinese Sci. Bull., 41:6 (1996), 441–446 | Zbl

[13] Su C., Zhao L., Wang Y., “Moment inequality and weak convergence for negatively associated sequences”, Sci. in China. Ser. A, 40:2 (1997), 172–182 | DOI | Zbl