Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2000_68_3_a9, author = {A. E. Mikusheva}, title = {On the complete convergence of sums of negatively associated random variables}, journal = {Matemati\v{c}eskie zametki}, pages = {411--420}, publisher = {mathdoc}, volume = {68}, number = {3}, year = {2000}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2000_68_3_a9/} }
A. E. Mikusheva. On the complete convergence of sums of negatively associated random variables. Matematičeskie zametki, Tome 68 (2000) no. 3, pp. 411-420. http://geodesic.mathdoc.fr/item/MZM_2000_68_3_a9/
[1] Hsu P. L., Robbins H., “Complete convergence and the law of large numbers”, Proc. Nat. Acad. Sci., 33 (1947), 25–31 | DOI | MR | Zbl
[2] Erdös P., “On a theorem of Hsu and Robbins”, Ann. Math. Statist., 20 (1949), 286–291 | DOI | MR | Zbl
[3] Hu T. C., Moricz F., Taylor R. L., “Strong laws of large numbers for arrays of rowwise independent random variables”, Acta Math. Hungar., 54 (1992), 153–162 | MR
[4] Asmussen S., Kurtz T. G., “Necessary and sufficient conditions for complete convergence in the law of large numbers”, Ann. Probab., 8:1 (1980), 176–182 | DOI | MR | Zbl
[5] Gut A., “On complete convergence in the law of large numbers for subsequences”, Ann. Probab., 13:4 (1985), 1286–1291 | DOI | Zbl
[6] Gut A., “Complete convergence for arrays”, Periodica Math. Hungar., 25:1 (1992), 51–75 | DOI | Zbl
[7] Kuczmaszewska A., Szynal D., “On the Hsu–Robbins law of large numbers for subsequences”, Bull. Polish Acad. Sci. Math., 36:1 (1988), 69–79 | Zbl
[8] Bulinski A. V., “Limit laws for arrays”, Int. Congress of Mathematicians, Abstracts of communications, Berlin, 1998, 24
[9] Bulinski A. V., Mikusheva A. E., “SLLN and other laws for arrays”, 7th Vilnius Conference on Probab. Theory, Abstracts of communications, 1998, 167
[10] Mikusheva A. E., “Zakon bolshikh chisel i logarifmicheskii zakon v skheme serii”, Fundament. i prikl. matem. (to appear)
[11] Joag-Dev K., Proschan F., “Negative association of random variables with applications”, Ann. Statist., 11 (1983), 286–295 | DOI
[12] Su C., “A theorem of Hsu–Robbins type for negatively associated sequence”, Chinese Sci. Bull., 41:6 (1996), 441–446 | Zbl
[13] Su C., Zhao L., Wang Y., “Moment inequality and weak convergence for negatively associated sequences”, Sci. in China. Ser. A, 40:2 (1997), 172–182 | DOI | Zbl