Algorithmic aspects of partial convexity
Matematičeskie zametki, Tome 68 (2000) no. 3, pp. 399-410.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_2000_68_3_a8,
     author = {N. N. Metel'skii and V. G. Naidenko},
     title = {Algorithmic aspects of partial convexity},
     journal = {Matemati\v{c}eskie zametki},
     pages = {399--410},
     publisher = {mathdoc},
     volume = {68},
     number = {3},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2000_68_3_a8/}
}
TY  - JOUR
AU  - N. N. Metel'skii
AU  - V. G. Naidenko
TI  - Algorithmic aspects of partial convexity
JO  - Matematičeskie zametki
PY  - 2000
SP  - 399
EP  - 410
VL  - 68
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2000_68_3_a8/
LA  - ru
ID  - MZM_2000_68_3_a8
ER  - 
%0 Journal Article
%A N. N. Metel'skii
%A V. G. Naidenko
%T Algorithmic aspects of partial convexity
%J Matematičeskie zametki
%D 2000
%P 399-410
%V 68
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2000_68_3_a8/
%G ru
%F MZM_2000_68_3_a8
N. N. Metel'skii; V. G. Naidenko. Algorithmic aspects of partial convexity. Matematičeskie zametki, Tome 68 (2000) no. 3, pp. 399-410. http://geodesic.mathdoc.fr/item/MZM_2000_68_3_a8/

[1] Metelskii N. N., Martynchik V. N., “Chastichnaya vypuklost”, Matem. zametki, 60:3 (1996), 406–413 | MR | Zbl

[2] Matousek J., Plechac P., On functional separately convex hulls, KAM Series. Technical Report No 95-292, Charles Univ., Prague, 1995

[3] Leikhtveis K., Vypuklye mnozhestva, Nauka, M., 1985

[4] Seymour P. D., “A note on hyperplane generation”, J. Combinatorial Theory. Ser. B, 1994, 88–91 | DOI | MR | Zbl

[5] Soltan V. P., Vvedenie v aksiomaticheskuyu teoriyu vypuklosti, Shtiintsa, Kishinev, 1984 | Zbl