Global regularity estimates for multidimensional equations of compressible non-Newtonian fluids
Matematičeskie zametki, Tome 68 (2000) no. 3, pp. 360-376.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_2000_68_3_a4,
     author = {A. E. Mamontov},
     title = {Global regularity estimates for multidimensional equations of compressible {non-Newtonian} fluids},
     journal = {Matemati\v{c}eskie zametki},
     pages = {360--376},
     publisher = {mathdoc},
     volume = {68},
     number = {3},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2000_68_3_a4/}
}
TY  - JOUR
AU  - A. E. Mamontov
TI  - Global regularity estimates for multidimensional equations of compressible non-Newtonian fluids
JO  - Matematičeskie zametki
PY  - 2000
SP  - 360
EP  - 376
VL  - 68
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2000_68_3_a4/
LA  - ru
ID  - MZM_2000_68_3_a4
ER  - 
%0 Journal Article
%A A. E. Mamontov
%T Global regularity estimates for multidimensional equations of compressible non-Newtonian fluids
%J Matematičeskie zametki
%D 2000
%P 360-376
%V 68
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2000_68_3_a4/
%G ru
%F MZM_2000_68_3_a4
A. E. Mamontov. Global regularity estimates for multidimensional equations of compressible non-Newtonian fluids. Matematičeskie zametki, Tome 68 (2000) no. 3, pp. 360-376. http://geodesic.mathdoc.fr/item/MZM_2000_68_3_a4/

[1] Serrin Dzh., Matematicheskie osnovy klassicheskoi mekhaniki zhidkosti, IL, M., 1963

[2] Vaigant V. A., Kazhikhov A. V., “O suschestvovanii globalnykh reshenii dvumernykh uravnenii Nave–Stoksa szhimaemoi vyazkoi zhidkosti”, Sib. matem. zh., 36:6 (1995), 1283–1316 | MR | Zbl

[3] Lions P.-L., Mathematical Topics in Fluid Mechanics. V. 2. Compressible Models, Clarendon Press, Oxford, 1998

[4] Málek J., Nečas J., Rokyta M., Růžička M., Weak and Measure-Valued Solutions to Evolutionary PDEs, Chapman Hall, London, Weinheim etc., 1996 | MR | Zbl

[5] Mamontov A. E., “Suschestvovanie globalnykh reshenii mnogomernykh uravnenii Byurgersa szhimaemoi vyazkoi zhidkosti”, Dokl. RAN, 361:2 (1998), 161–163 | MR | Zbl

[6] Mamontov A. E., “O globalnoi razreshimosti mnogomernykh uravnenii Nave–Stoksa szhimaemoi nelineino vyazkoi zhidkosti, I”, Sib. matem. zh., 40:2 (1999), 408–420 | MR | Zbl

[7] Mamontov A. E., “O globalnoi razreshimosti mnogomernykh uravnenii Nave–Stoksa szhimaemoi nelineino vyazkoi zhidkosti, II”, Sib. matem. zh., 40:3 (1999), 635–649 | MR | Zbl

[8] Kaplický P., Malek J., Stará J., “$C^{1,\alpha }$-Solutions to a Class of Nonlinear Fluids in Two Dimensions–Stationary Dirichlet Problem”, Nichtlineare partielle Differentialgleichungen, Sonderforschungsbereich 256, no. 529, Rheinische Friedrich-Wilhelms-Universität, Bonn, 1997

[9] Kazhikhov A. V., Mamontov A. E., “Ob odnom klasse vypuklykh funktsii i tochnykh klassakh korrektnosti zadachi Koshi dlya uravneniya perenosa v prostranstvakh Orlicha”, Sib. matem. zh., 39:4 (1998), 831–850 | MR | Zbl

[10] Berg I., Lefstrem I., Interpolyatsionnye prostranstva. Vvedenie, Mir, M., 1980

[11] Tartar L., “Interpolation nonlineaire et regularité”, J. Funct. Anal., 1972, no. 9, 469–489 | DOI | MR | Zbl