Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2000_68_3_a17, author = {O. G. Smolyanov and J. Kupsch}, title = {Bogolyubov transformations in {Wiener--Segal--Fock} space}, journal = {Matemati\v{c}eskie zametki}, pages = {474--479}, publisher = {mathdoc}, volume = {68}, number = {3}, year = {2000}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2000_68_3_a17/} }
O. G. Smolyanov; J. Kupsch. Bogolyubov transformations in Wiener--Segal--Fock space. Matematičeskie zametki, Tome 68 (2000) no. 3, pp. 474-479. http://geodesic.mathdoc.fr/item/MZM_2000_68_3_a17/
[1] Ruijsenaars S. N. M., Ann. Physics (N.Y.), 116 (1978), 105–134 | DOI | MR
[2] Bogolyubov N. N., Shirkov D. V., Kvantovye polya, Nauka, M., 1980 | Zbl
[3] Baez J. C., Segal I. E., Zhou Z., Introduction to Algebraic and Constructive Quantum Field Theory, Princeton Univ. Press, Princeton, 1992 | Zbl
[4] Smolyanov O. G., Weizsäcker H. V., Infinite dimensional analysis, quantum probability and related topics, 2:1 (1999), 51–79 | DOI | MR
[5] Smolyanov O. G., Weizsaecker H. V., C. R. Acad. Sci. Paris Sér. I, 321 (1995), 103–108 | MR | Zbl
[6] Lion Zh., Vern M., Predstavlenie Veilya, indeks Maslova i teta-ryady, Mir, M., 1983
[7] Vergne M., C. R. Acad. Sci. Paris, 285 (1977), 191–194 | MR | Zbl
[8] Shefer Kh., Topologicheskie vektornye prostranstva, Mir, M., 1971
[9] Ottesen J. T., Infinite Dimensional Groups and Algebras in Quantum Physics, Springer, New York, 1995 | Zbl
[10] Leng S., $\operatorname {SL}_2(\mathbb R)$, Mir, M., 1977
[11] Kupsh I., Smolyanov O. G., Dokl. RAN, 363:6 (1998), 741–745 | MR | Zbl
[12] Berezin F. A., Metod vtorichnogo kvantovaniya, Nauka, M., 1965