Necessary and sufficient conditions for the Lipschitzian invertibility of nonlinear difference operators in the spaces $\ell_p(\mathbb Z,\mathbb R)$ with $1\leqslant p\leqslant\infty$
Matematičeskie zametki, Tome 68 (2000) no. 3, pp. 448-454.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_2000_68_3_a13,
     author = {V. E. Slyusarchuk},
     title = {Necessary and sufficient conditions for the {Lipschitzian} invertibility of nonlinear difference operators in the spaces $\ell_p(\mathbb Z,\mathbb R)$ with $1\leqslant p\leqslant\infty$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {448--454},
     publisher = {mathdoc},
     volume = {68},
     number = {3},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2000_68_3_a13/}
}
TY  - JOUR
AU  - V. E. Slyusarchuk
TI  - Necessary and sufficient conditions for the Lipschitzian invertibility of nonlinear difference operators in the spaces $\ell_p(\mathbb Z,\mathbb R)$ with $1\leqslant p\leqslant\infty$
JO  - Matematičeskie zametki
PY  - 2000
SP  - 448
EP  - 454
VL  - 68
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2000_68_3_a13/
LA  - ru
ID  - MZM_2000_68_3_a13
ER  - 
%0 Journal Article
%A V. E. Slyusarchuk
%T Necessary and sufficient conditions for the Lipschitzian invertibility of nonlinear difference operators in the spaces $\ell_p(\mathbb Z,\mathbb R)$ with $1\leqslant p\leqslant\infty$
%J Matematičeskie zametki
%D 2000
%P 448-454
%V 68
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2000_68_3_a13/
%G ru
%F MZM_2000_68_3_a13
V. E. Slyusarchuk. Necessary and sufficient conditions for the Lipschitzian invertibility of nonlinear difference operators in the spaces $\ell_p(\mathbb Z,\mathbb R)$ with $1\leqslant p\leqslant\infty$. Matematičeskie zametki, Tome 68 (2000) no. 3, pp. 448-454. http://geodesic.mathdoc.fr/item/MZM_2000_68_3_a13/

[1] Khalanai A., Veksler D., Kachestvennaya teoriya impulsnykh sistem, Mir, M., 1971

[2] Martynyuk D. I., Lektsii po kachestvennoi teorii raznostnykh uravnenii, Naukova dumka, Kiev, 1972

[3] Kurbatov V. G., Lineinye differentsialno-raznostnye uravneniya, Izd-vo Voronezh. un-ta, Voronezh, 1990 | Zbl

[4] Dorogovtsev A. Ya., Periodicheskie i statsionarnye rezhimy beskonechnomernykh determinirovannykh i stokhasticheskikh dinamicheskikh sistem, Vischa shkola, Kiev, 1992

[5] Coffman S. V., Schäffer J. J., “Dichotomies for linear difference equations”, Math. Ann., 172 (1967), 139–166 | DOI | MR | Zbl

[6] Slyusarchuk V. E., “Ob eksponentsialnoi dikhotomii reshenii diskretnykh sistem”, Ukr. matem. zh., 35:1 (1983), 109–115 | MR | Zbl

[7] Slyusarchuk V. E., “Obratimost lineinykh neavtonomnykh raznostnykh operatorov v prostranstve ogranichennykh na $Z$ funktsii”, Matem. zametki, 37:5 (1985), 662–666 | MR | Zbl

[8] Slyusarchuk V. E., “O predstavlenii ogranichennykh reshenii lineinykh diskretnykh sistem”, Ukr. matem. zh., 39:2 (1987), 210–215 | MR | Zbl

[9] Slyusarchuk V. E., “Slabo nelineinye vozmuscheniya normalno razreshimykh funktsionalno-differentsialnykh i diskretnykh uravnenii”, Ukr. matem. zh., 39:5 (1987), 660–662 | MR

[10] Baskakov A. G., “Nekotorye usloviya obratimosti lineinykh differentsialnykh i raznostnykh operatorov”, Dokl. RAN, 333:3 (1993), 282–284 | MR | Zbl

[11] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1968 | Zbl