Tangential boundary behavior of functions of several variables
Matematičeskie zametki, Tome 68 (2000) no. 2, pp. 230-248.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_2000_68_2_a7,
     author = {V. G. Krotov},
     title = {Tangential boundary behavior of functions of several variables},
     journal = {Matemati\v{c}eskie zametki},
     pages = {230--248},
     publisher = {mathdoc},
     volume = {68},
     number = {2},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2000_68_2_a7/}
}
TY  - JOUR
AU  - V. G. Krotov
TI  - Tangential boundary behavior of functions of several variables
JO  - Matematičeskie zametki
PY  - 2000
SP  - 230
EP  - 248
VL  - 68
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2000_68_2_a7/
LA  - ru
ID  - MZM_2000_68_2_a7
ER  - 
%0 Journal Article
%A V. G. Krotov
%T Tangential boundary behavior of functions of several variables
%J Matematičeskie zametki
%D 2000
%P 230-248
%V 68
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2000_68_2_a7/
%G ru
%F MZM_2000_68_2_a7
V. G. Krotov. Tangential boundary behavior of functions of several variables. Matematičeskie zametki, Tome 68 (2000) no. 2, pp. 230-248. http://geodesic.mathdoc.fr/item/MZM_2000_68_2_a7/

[1] Nagel A., Rudin W., Shapiro J., “Tangential boundary behavior of functions in Dirichlet-type spaces”, Ann. of Math., 116:2 (1982), 331–360 | DOI | MR | Zbl

[2] Nagel A., Stein E. M., “On certain maximal functions and approach regions”, Adv. Math., 54:1 (1984), 83–106 | DOI | MR | Zbl

[3] Ahern P., Nagel A., “Strong $L^p$-estimates for maximal functions with respect to singular measure with applications to exceptional sets”, Duke Math. J., 53:2 (1986), 359–393 | DOI | MR | Zbl

[4] Krotov V. G., “Otsenki dlya maksimalnykh operatorov, svyazannykh s granichnym povedeniem, i ikh prilozheniya”, Tr. MIAN, 190, Nauka, M., 1989, 117–138 | MR

[5] Krotov V. G., “O granichnom povedenii funktsii iz prostranstv tipa Khardi”, Izv. AN SSSR. Ser. matem., 54:5 (1990), 957–974 | Zbl

[6] Sueiro J., “Tangential boundary limits and exceptional sets for harmonic function in Dirichlet-type spaces”, J. Math. Ann., 286:4 (1990), 661–678 | DOI | MR | Zbl

[7] Cifuentes P., Dorronsoro J., Sueiro J., “Boundary tangential convergence in spaces of homogeneous type”, Trans. Amer. Math. Soc., 332:1 (1992), 331–350 | DOI | MR | Zbl

[8] Cascante C., Ortega J. M., “Tangential-exceptional sets for Hardy–Sobolev spaces”, Illinois J. Math., 39:1 (1995), 68–85 | MR | Zbl

[9] Verhota G., “The Dirichlet problem for the polyharmonic equation in Liphschitz domains”, Indiana Univ. Math. J., 39:3 (1990), 671–702 | DOI | MR

[10] Krotov V. G., “Vesovye neravenstva, svyazannye s granichnym povedeniem funktsii iz mnogomernykh klassov Khardi–Soboleva i reshenii ellipticheskikh kraevykh zadach”, Kraevye zadachi, spetsialnye funktsii i drobnoe ischislenie, Trudy mezhdunarodnoi konferentsii, posvyaschennoi 90-letiyu so dnya rozhdeniya akademika F. D. Gakhova (Belarus, Minsk, 16–20 fevralya 1996 g.), Minsk, 1996, 172–177 | MR

[11] Coifman R. R., Weiss G., “Extensions of Hardy spaces and their use in analysis”, Bull. Amer. Math. Soc., 83:4 (1977), 569–645 | DOI | MR | Zbl

[12] Rudin U., Teoriya funktsii v edinichnom share v $\mathbb C^n$, Mir, M., 1984 | Zbl

[13] Krotov V. G., “O differentsialnykh svoistvakh na granitse funktsii, golomorfnykh v edinichnom share v $\mathbb C^n$”, Matem. zametki, 45:2 (1989), 51–59 | MR

[14] Pipher J., Verhota G. C., “Dilatation invariant estimates and the boundary Gårding inequality for the higher order elliptic operators”, Ann. of Math., 142:1 (1995), 1–36 | DOI | MR

[15] Ahern P., Cohn W., “Exceptional sets for Hardy–Sobolev functions”, Indiana Univ. Math. J., 38:2 (1989), 417–452 | DOI | MR