Asymptotic decay of solutions of the Liouville equation under perturbations
Matematičeskie zametki, Tome 68 (2000) no. 2, pp. 195-209.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_2000_68_2_a4,
     author = {L. A. Kalyakin},
     title = {Asymptotic decay of solutions of the {Liouville} equation under perturbations},
     journal = {Matemati\v{c}eskie zametki},
     pages = {195--209},
     publisher = {mathdoc},
     volume = {68},
     number = {2},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2000_68_2_a4/}
}
TY  - JOUR
AU  - L. A. Kalyakin
TI  - Asymptotic decay of solutions of the Liouville equation under perturbations
JO  - Matematičeskie zametki
PY  - 2000
SP  - 195
EP  - 209
VL  - 68
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2000_68_2_a4/
LA  - ru
ID  - MZM_2000_68_2_a4
ER  - 
%0 Journal Article
%A L. A. Kalyakin
%T Asymptotic decay of solutions of the Liouville equation under perturbations
%J Matematičeskie zametki
%D 2000
%P 195-209
%V 68
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2000_68_2_a4/
%G ru
%F MZM_2000_68_2_a4
L. A. Kalyakin. Asymptotic decay of solutions of the Liouville equation under perturbations. Matematičeskie zametki, Tome 68 (2000) no. 2, pp. 195-209. http://geodesic.mathdoc.fr/item/MZM_2000_68_2_a4/

[1] Kalyakin L. A., “Dlinnovolnovye asimptotiki. Integriruemye uravneniya kak asimptoticheskii predel nelineinykh sistem”, UMN, 44:1 (1989), 3–34 | MR | Zbl

[2] Karpman V. I., Maslov E. M., “Teoriya vozmuschenii dlya solitonov”, ZhETF, 73:8 (1977), 538–559

[3] Keener J. P., Mc-Loughlin D. W., “Solitons under perturbations”, Phys. Rev. A, 18:4 (1978), 1652–1680 | DOI

[4] Maslov E. M., “K teorii vozmuschenii dlya solitonov vo vtorom priblizhenii”, TMF, 42:3 (1980), 362–370 | MR

[5] Krichever I. M., “Gessiany integralov uravneniya Kortevega–de Friza i vozmuschenie konechnozonnykh reshenii”, Dokl. AN SSSR, 270:6 (1983), 1312–1316 | MR

[6] Nyuell A., “Obratnoe preobrazovanie rasseyaniya”, Solitony, eds. R. Bullaf, F. Kodri, Mir, M., 1983, 193–269

[7] Dobrohotov S. Yu., Maslov V. P., “Multiphase asymptotics of nonlinear partial differential equations with a small parameter”, Sov. Sci. Rev., 3, 1988, 221–311

[8] Maslov V. P., Omelyanov G. A., “Ob usloviyakh tipa Gyugonio dlya beskonechno uzkikh reshenii uravneniya prostykh voln”, Sib. matem. zhurn., 24 (1983), 172–182 | MR | Zbl

[9] Maslov V. P., Omelyanov G. A., “Solitonoobraznye asimptotiki vnutrennikh voln v stratifitsirovannoi zhidkosti s maloi dispersiei”, Differents. uravneniya, 21:10 (1985), 1766–1775 | MR | Zbl

[10] Maslov V. P., Asimptoticheskie metody resheniya psevdodifferentsialnykh uravnenii, Nauka, M., 1987

[11] Kalyakin L. A., “Vozmuschenie solitona Kortevega–de Friza”, TMF, 92:1 (1992), 62–76 | MR

[12] Pogrebkov A. K., Polivanov M. K., “Teoriya polya Liuvillya”, Tr. MIAN, 176, Nauka, M., 1987, 86–96 | MR

[13] Dzhordzhadze G. P., Pogrebkov A. K., Polivanov M. K., “Singulyarnye resheniya uravneniya $\square\varphi +(m^2/2)\exp\varphi =0$ i dinamika osobennostei”, TMF, 40:2 (1979), 221–234 | MR | Zbl

[14] Liouville J., “Sur l'équation aux différences partielles $\partial^2\ln\lambda/\partial u\,\partial v\pm\lambda^2q=0$”, J. Math. Pure Appl., 18 (1853), 71–74

[15] Bogolyubov N. N., Mitropolskii Yu. A., Asimptoticheskie metody v teorii nelineinykh kolebanii, Nauka, M., 1974

[16] Bianchi L., Ann. Sci. Norm. Super. Piza Ser. 1, 26:2 (1879)

[17] Pogrebkov A. K., “O globalnykh resheniyakh zadachi Koshi dlya uravneniya Liuvillya $\varphi_{tt}-\varphi_{xx}=-1/2m^2\exp\varphi$ v sluchae singulyarnykh nachalnykh dannykh”, Dokl. AN SSSR, 244:4 (1979), 873–876 | MR | Zbl

[18] Ilin A. M., Metod soglasovaniya asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989

[19] Kalyakin L. A., “Dlinnovolnovaya asimptotika resheniya giperbolicheskoi sistemy uravnenii”, Matem. sb., 124:1 (1984), 96–120 | MR | Zbl