Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2000_68_2_a11, author = {Yu. A. Farkov}, title = {On the $\varepsilon$-entropy of classes of holomorphic functions}, journal = {Matemati\v{c}eskie zametki}, pages = {286--293}, publisher = {mathdoc}, volume = {68}, number = {2}, year = {2000}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2000_68_2_a11/} }
Yu. A. Farkov. On the $\varepsilon$-entropy of classes of holomorphic functions. Matematičeskie zametki, Tome 68 (2000) no. 2, pp. 286-293. http://geodesic.mathdoc.fr/item/MZM_2000_68_2_a11/
[1] Tikhomirov V. M., Nekotorye voprosy teorii priblizhenii, Izd-vo MGU, M., 1976
[2] Rudin U., Teoriya funktsii v edinichnom share iz $\mathbb C^n$, Mir, M., 1984 | Zbl
[3] Dveirin M. Z., “Poperechniki i $\varepsilon $-entropiya klassov funktsii, analiticheskikh v edinichnom kruge”, Teoriya funktsii, funktsion. analiz i ikh prilozh., no. 23, Izd-vo Khark. un-ta, Kharkov, 1975, 32–46 | MR
[4] Farkov Yu. A., “O poperechnikakh nekotorykh klassov analiticheskikh funktsii”, UMN, 39:1 (1984), 161–162 | MR | Zbl
[5] Farkov Yu. A., “The $N$-widths of Hardy–Sobolev spaces of several complex variables”, J. Approx. Theory, 75:2 (1993), 183–197 | DOI | MR | Zbl
[6] Vilenkin N. Ya., Kombinatorika, Nauka, M., 1969 | Zbl