On the $\varepsilon$-entropy of classes of holomorphic functions
Matematičeskie zametki, Tome 68 (2000) no. 2, pp. 286-293.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_2000_68_2_a11,
     author = {Yu. A. Farkov},
     title = {On the $\varepsilon$-entropy of classes of holomorphic functions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {286--293},
     publisher = {mathdoc},
     volume = {68},
     number = {2},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2000_68_2_a11/}
}
TY  - JOUR
AU  - Yu. A. Farkov
TI  - On the $\varepsilon$-entropy of classes of holomorphic functions
JO  - Matematičeskie zametki
PY  - 2000
SP  - 286
EP  - 293
VL  - 68
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2000_68_2_a11/
LA  - ru
ID  - MZM_2000_68_2_a11
ER  - 
%0 Journal Article
%A Yu. A. Farkov
%T On the $\varepsilon$-entropy of classes of holomorphic functions
%J Matematičeskie zametki
%D 2000
%P 286-293
%V 68
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2000_68_2_a11/
%G ru
%F MZM_2000_68_2_a11
Yu. A. Farkov. On the $\varepsilon$-entropy of classes of holomorphic functions. Matematičeskie zametki, Tome 68 (2000) no. 2, pp. 286-293. http://geodesic.mathdoc.fr/item/MZM_2000_68_2_a11/

[1] Tikhomirov V. M., Nekotorye voprosy teorii priblizhenii, Izd-vo MGU, M., 1976

[2] Rudin U., Teoriya funktsii v edinichnom share iz $\mathbb C^n$, Mir, M., 1984 | Zbl

[3] Dveirin M. Z., “Poperechniki i $\varepsilon $-entropiya klassov funktsii, analiticheskikh v edinichnom kruge”, Teoriya funktsii, funktsion. analiz i ikh prilozh., no. 23, Izd-vo Khark. un-ta, Kharkov, 1975, 32–46 | MR

[4] Farkov Yu. A., “O poperechnikakh nekotorykh klassov analiticheskikh funktsii”, UMN, 39:1 (1984), 161–162 | MR | Zbl

[5] Farkov Yu. A., “The $N$-widths of Hardy–Sobolev spaces of several complex variables”, J. Approx. Theory, 75:2 (1993), 183–197 | DOI | MR | Zbl

[6] Vilenkin N. Ya., Kombinatorika, Nauka, M., 1969 | Zbl