Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2000_68_1_a6, author = {R. O. Hryniv and S. Yu. Dobrokhotov and A. A. Shkalikov}, title = {An operator model for the oscillation problem of liquids on an elastic bottom}, journal = {Matemati\v{c}eskie zametki}, pages = {66--81}, publisher = {mathdoc}, volume = {68}, number = {1}, year = {2000}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2000_68_1_a6/} }
TY - JOUR AU - R. O. Hryniv AU - S. Yu. Dobrokhotov AU - A. A. Shkalikov TI - An operator model for the oscillation problem of liquids on an elastic bottom JO - Matematičeskie zametki PY - 2000 SP - 66 EP - 81 VL - 68 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2000_68_1_a6/ LA - ru ID - MZM_2000_68_1_a6 ER -
%0 Journal Article %A R. O. Hryniv %A S. Yu. Dobrokhotov %A A. A. Shkalikov %T An operator model for the oscillation problem of liquids on an elastic bottom %J Matematičeskie zametki %D 2000 %P 66-81 %V 68 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2000_68_1_a6/ %G ru %F MZM_2000_68_1_a6
R. O. Hryniv; S. Yu. Dobrokhotov; A. A. Shkalikov. An operator model for the oscillation problem of liquids on an elastic bottom. Matematičeskie zametki, Tome 68 (2000) no. 1, pp. 66-81. http://geodesic.mathdoc.fr/item/MZM_2000_68_1_a6/
[1] Pod'yapolskii G. S., “Vozbuzhdenie dlinnoi gravitatsionnoi volny v okeane seismicheskim istochnikom v kore”, Izv. AN SSSR. Fizika Zemli, 1968, no. 1, 7–24
[2] Zvolinskii N. V., “O seismicheskom mekhanizme vozbuzhdeniya voln tsunami”, Izv. AN SSSR. Fizika Zemli, 1986, no. 3, 3–15
[3] Zvolinskii M. V., Nikitin I. S., Sekerzh-Zenkovich S. Ya., “Generatsiya voln tsunami i voln Releya garmonicheskim tsentrom rasshireniya”, Izv. AN SSSR. Fizika Zemli, 1991, no. 2, 34–44
[4] Aslanyan A. G., Vasilev D. G., Lidskii V. B., “Chastota svobodnykh kolebanii tonkoi obolochki, vzaimodeistvuyuschei s zhidkostyu”, Funktsion. analiz i ego prilozh., 15:3 (1981), 1–9 | MR | Zbl
[5] Molotkov I. A., Kraukliss P. V., “Smeshannye poverkhnostnye volny na granitse uprugoi sredy i zhidkosti”, Izv. AN SSSR. Fizika Zemli, 1971, no. 8, 3–11
[6] Fragela A. K., “K zadache o dvizhenii idealnoi zhidkosti v neogranichennom uprugom basseine”, Differents. uravneniya, 25:8 (1989), 1417–1426 | MR | Zbl
[7] Uizem Dzh., Lineinye i nelineinye volny, Mir, M., 1977
[8] Berdichevskii B. L., Variatsionnye printsipy mekhaniki sploshnoi sredy, Nauka, M., 1983
[9] Zakharov V. E., “Ustoichivost periodicheskikh voln konechnoi amplitudy na poverkhnosti glubokoi zhidkosti”, PMTF, 1968, no. 2, 86–94
[10] Luke J. C., “A variational principle for a fluid with a free surface”, J. Fluid Mech., 27 (1967), 395–397 | DOI | MR | Zbl
[11] Dobrokhotov S. Yu., Tolstova O. L., Chudinovich I. Yu., “Volny v zhidkosti na uprugom osnovanii. Teoriya suschestvovaniya i tochnye resheniya”, Matem. zametki, 54:6 (1993), 33–55 | MR | Zbl
[12] Mazya V. G., Prostranstva Soboleva, Izd-vo Leningr. un-ta, L., 1985 | Zbl
[13] Stein I., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973
[14] Kondratev V. A., Oleinik O. A., “Kraevye zadachi dlya sistemy teorii uprugosti v neogranichennykh oblastyakh. Neravenstva Korna”, UMN, 43:5 (1988), 55–98 | MR
[15] Riss F., Sekefalvi-Nad B., Lektsii po funktsionalnomu analizu, Mir, M., 1979
[16] Krein S. G., Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967
[17] Lions Zh. L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971 | Zbl
[18] Shkalikov A. A., “Operator pencils arising in elasticity and hydrodynamics. Instability index formula”, Operator Theory: Advances and Applications, 87, Birkhäuser Verlag, Basel, 1996, 258–285 | MR
[19] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, T. 4, Mir, M., 1982