An operator model for the oscillation problem of liquids on an elastic bottom
Matematičeskie zametki, Tome 68 (2000) no. 1, pp. 66-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_2000_68_1_a6,
     author = {R. O. Hryniv and S. Yu. Dobrokhotov and A. A. Shkalikov},
     title = {An operator model for the oscillation problem of liquids on an elastic bottom},
     journal = {Matemati\v{c}eskie zametki},
     pages = {66--81},
     publisher = {mathdoc},
     volume = {68},
     number = {1},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2000_68_1_a6/}
}
TY  - JOUR
AU  - R. O. Hryniv
AU  - S. Yu. Dobrokhotov
AU  - A. A. Shkalikov
TI  - An operator model for the oscillation problem of liquids on an elastic bottom
JO  - Matematičeskie zametki
PY  - 2000
SP  - 66
EP  - 81
VL  - 68
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2000_68_1_a6/
LA  - ru
ID  - MZM_2000_68_1_a6
ER  - 
%0 Journal Article
%A R. O. Hryniv
%A S. Yu. Dobrokhotov
%A A. A. Shkalikov
%T An operator model for the oscillation problem of liquids on an elastic bottom
%J Matematičeskie zametki
%D 2000
%P 66-81
%V 68
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2000_68_1_a6/
%G ru
%F MZM_2000_68_1_a6
R. O. Hryniv; S. Yu. Dobrokhotov; A. A. Shkalikov. An operator model for the oscillation problem of liquids on an elastic bottom. Matematičeskie zametki, Tome 68 (2000) no. 1, pp. 66-81. http://geodesic.mathdoc.fr/item/MZM_2000_68_1_a6/

[1] Pod'yapolskii G. S., “Vozbuzhdenie dlinnoi gravitatsionnoi volny v okeane seismicheskim istochnikom v kore”, Izv. AN SSSR. Fizika Zemli, 1968, no. 1, 7–24

[2] Zvolinskii N. V., “O seismicheskom mekhanizme vozbuzhdeniya voln tsunami”, Izv. AN SSSR. Fizika Zemli, 1986, no. 3, 3–15

[3] Zvolinskii M. V., Nikitin I. S., Sekerzh-Zenkovich S. Ya., “Generatsiya voln tsunami i voln Releya garmonicheskim tsentrom rasshireniya”, Izv. AN SSSR. Fizika Zemli, 1991, no. 2, 34–44

[4] Aslanyan A. G., Vasilev D. G., Lidskii V. B., “Chastota svobodnykh kolebanii tonkoi obolochki, vzaimodeistvuyuschei s zhidkostyu”, Funktsion. analiz i ego prilozh., 15:3 (1981), 1–9 | MR | Zbl

[5] Molotkov I. A., Kraukliss P. V., “Smeshannye poverkhnostnye volny na granitse uprugoi sredy i zhidkosti”, Izv. AN SSSR. Fizika Zemli, 1971, no. 8, 3–11

[6] Fragela A. K., “K zadache o dvizhenii idealnoi zhidkosti v neogranichennom uprugom basseine”, Differents. uravneniya, 25:8 (1989), 1417–1426 | MR | Zbl

[7] Uizem Dzh., Lineinye i nelineinye volny, Mir, M., 1977

[8] Berdichevskii B. L., Variatsionnye printsipy mekhaniki sploshnoi sredy, Nauka, M., 1983

[9] Zakharov V. E., “Ustoichivost periodicheskikh voln konechnoi amplitudy na poverkhnosti glubokoi zhidkosti”, PMTF, 1968, no. 2, 86–94

[10] Luke J. C., “A variational principle for a fluid with a free surface”, J. Fluid Mech., 27 (1967), 395–397 | DOI | MR | Zbl

[11] Dobrokhotov S. Yu., Tolstova O. L., Chudinovich I. Yu., “Volny v zhidkosti na uprugom osnovanii. Teoriya suschestvovaniya i tochnye resheniya”, Matem. zametki, 54:6 (1993), 33–55 | MR | Zbl

[12] Mazya V. G., Prostranstva Soboleva, Izd-vo Leningr. un-ta, L., 1985 | Zbl

[13] Stein I., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973

[14] Kondratev V. A., Oleinik O. A., “Kraevye zadachi dlya sistemy teorii uprugosti v neogranichennykh oblastyakh. Neravenstva Korna”, UMN, 43:5 (1988), 55–98 | MR

[15] Riss F., Sekefalvi-Nad B., Lektsii po funktsionalnomu analizu, Mir, M., 1979

[16] Krein S. G., Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967

[17] Lions Zh. L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971 | Zbl

[18] Shkalikov A. A., “Operator pencils arising in elasticity and hydrodynamics. Instability index formula”, Operator Theory: Advances and Applications, 87, Birkhäuser Verlag, Basel, 1996, 258–285 | MR

[19] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, T. 4, Mir, M., 1982