Uncomplemented subspaces of Lorentz spaces
Matematičeskie zametki, Tome 68 (2000) no. 1, pp. 57-65.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_2000_68_1_a5,
     author = {I. B. Bryskin and E. M. Semenov},
     title = {Uncomplemented subspaces of {Lorentz} spaces},
     journal = {Matemati\v{c}eskie zametki},
     pages = {57--65},
     publisher = {mathdoc},
     volume = {68},
     number = {1},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2000_68_1_a5/}
}
TY  - JOUR
AU  - I. B. Bryskin
AU  - E. M. Semenov
TI  - Uncomplemented subspaces of Lorentz spaces
JO  - Matematičeskie zametki
PY  - 2000
SP  - 57
EP  - 65
VL  - 68
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2000_68_1_a5/
LA  - ru
ID  - MZM_2000_68_1_a5
ER  - 
%0 Journal Article
%A I. B. Bryskin
%A E. M. Semenov
%T Uncomplemented subspaces of Lorentz spaces
%J Matematičeskie zametki
%D 2000
%P 57-65
%V 68
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2000_68_1_a5/
%G ru
%F MZM_2000_68_1_a5
I. B. Bryskin; E. M. Semenov. Uncomplemented subspaces of Lorentz spaces. Matematičeskie zametki, Tome 68 (2000) no. 1, pp. 57-65. http://geodesic.mathdoc.fr/item/MZM_2000_68_1_a5/

[1] Ando T., “Banachverbände und positive Projektionen”, Math. Z., 109 (1969), 121–130 | DOI | MR | Zbl

[2] Lindenstrauss J., Tzafriri L., Classical Banach Spaces. V. II. Function Spaces, Springer, Berlin, 1979 | Zbl

[3] Tzafriri L., “An isomorphic characterization of $L_p$ and $c_0$ spaces, II”, Michigan Math. J., 18 (1971), 21–31 | DOI | MR | Zbl

[4] Krein S. G., Petunin Yu. I., Semenov E. M., Interpolyatsiya lineinykh operatorov, Nauka, M., 1978