Permutations of the Walsh system that preserve Lebesgue constants
Matematičeskie zametki, Tome 68 (2000) no. 1, pp. 36-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_2000_68_1_a3,
     author = {M. S. Bespalov},
     title = {Permutations of the {Walsh} system that preserve {Lebesgue} constants},
     journal = {Matemati\v{c}eskie zametki},
     pages = {36--48},
     publisher = {mathdoc},
     volume = {68},
     number = {1},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2000_68_1_a3/}
}
TY  - JOUR
AU  - M. S. Bespalov
TI  - Permutations of the Walsh system that preserve Lebesgue constants
JO  - Matematičeskie zametki
PY  - 2000
SP  - 36
EP  - 48
VL  - 68
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2000_68_1_a3/
LA  - ru
ID  - MZM_2000_68_1_a3
ER  - 
%0 Journal Article
%A M. S. Bespalov
%T Permutations of the Walsh system that preserve Lebesgue constants
%J Matematičeskie zametki
%D 2000
%P 36-48
%V 68
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2000_68_1_a3/
%G ru
%F MZM_2000_68_1_a3
M. S. Bespalov. Permutations of the Walsh system that preserve Lebesgue constants. Matematičeskie zametki, Tome 68 (2000) no. 1, pp. 36-48. http://geodesic.mathdoc.fr/item/MZM_2000_68_1_a3/

[1] Paley R. E. A. C., “A remarkable system of orthogonal functions”, Proc. London Math. Soc., 34 (1932), 241–279 | DOI

[2] Fine N. J., “On the Walsh functions”, Trans. Amer. Math. Soc., 65:3 (1949), 372–414 | DOI | MR | Zbl

[3] Walsh J. L., “A closed set of normal orthogonal functions”, Amer. J. Math., 45 (1923), 5–24 | DOI | MR

[4] Levizov S. V., “Nekotorye svoistva sistemy Uolsha”, Matem. zametki, 27:5 (1980), 715–720 | MR | Zbl

[5] Balashov L. A., Rubinshtein A. I., “Ryady po sisteme Uolsha i ikh obobscheniya”, Itogi nauki. Matem. analiz 1970, VINITI, M., 1971, 147–202 | MR | Zbl

[6] Agaev G. N., Vilenkin N. Ya., Dzhafarli G. M., Rubinshtein A. I., Multiplikativnye sistemy funktsii i garmonicheskii analiz na nulmernykh gruppakh, Elm, Baku, 1981

[7] Golubov B. I., Efimov A. V., Skvortsov V. A., Ryady i preobrazovaniya Uolsha: Teoriya i primeneniya, Nauka, M., 1987 | Zbl

[8] Schipp F., Wade W. R., Simon P., Pál J., Walsh Series an Introduction to Diadic Harmonic Analysis, Akad. Kiadó, Budapest, 1990

[9] Shipp F., “O nekotorykh perestanovkakh ryadov po sisteme Uolsha”, Matem. zametki, 18:2 (1975), 193–201 | MR | Zbl

[10] Shneider A. A., “O ryadakh po funktsiyam Valsha s monotonnymi koeffitsientami”, Izv. AN SSSR. Ser. matem., 12 (1948), 179–192 | MR | Zbl

[11] Balashov L. A., “O ryadakh po sisteme Uolsha s monotonnymi koeffitsientami”, Sib. matem. zh., 12:1 (1971), 25–30 | MR

[12] Bespalov M. S., “Konstanty Lebega dlya perestanovok sistemy Uolsha”, Algebra i analiz, Materialy konferentsii, posvyaschennoi 100-letiyu B. M. Gagaeva, Kazan, 1997, 33–34

[13] Bespalov M. S., “Yadra Dirikhle i konstanty Lebega dlya sistemy Krestensona–Levi”, Sovremennye problemy teorii funktsii i ikh prilozheniya, Tezisy dokl. 8-i Saratovskoi zimnei shkoly, SGU, Saratov, 1996, 17–18

[14] Bespalova A. G., “Lineinye biektsii v prostranstvakh posledovatelnostei”, Matematika. Obrazovanie. Ekonomika, VI Mezhdunarodnaya konferentsiya zhenschin-matematikov. Tezisy dokl., Cheboksary, 1998, 25