Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2000_68_1_a11, author = {A. A. Makhnev}, title = {$GQ(4,2)$-extensions, strongly regular case}, journal = {Matemati\v{c}eskie zametki}, pages = {113--119}, publisher = {mathdoc}, volume = {68}, number = {1}, year = {2000}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2000_68_1_a11/} }
A. A. Makhnev. $GQ(4,2)$-extensions, strongly regular case. Matematičeskie zametki, Tome 68 (2000) no. 1, pp. 113-119. http://geodesic.mathdoc.fr/item/MZM_2000_68_1_a11/
[1] Buekenhout F., Hubaut X., “Locally polar spaces and related rank 3 groups”, J. Algebra, 45:2 (1977), 391–434 | DOI | MR | Zbl
[2] Makhnev A. A., “Locally $GQ(3,5)$-graphs and geometries with short lines”, Vseukrainskaya konferentsiya pamyati P. S. Kazimirskogo, Tezisy dokl., Lvov, 1995, 59–60
[3] Makhnev A. A., “Konechnye lokalno $GQ(3,3)$ grafy”, Sib. matem. zh., 35:6 (1994), 1314–1324 | MR | Zbl
[4] Pasechnik D. V., “The triangular extensions of a generalized quadrangle of order $(3,3)$”, Bull. Belg. Math. Soc., 2 (1995), 509–518 | MR | Zbl
[5] Pasechnik D. V., “The extensions of the generalized quadrangle of order $(3,9)$”, Eur. J. Comb., 17 (1996), 751–755 | DOI | MR | Zbl
[6] Pain S., Thas J. A., Finite Generalized Quadrangles, Pitman, Boston, 1984
[7] Blokhuis A., Brouwer A. E., Uniqueness of a Zara graph on $126$ points and nonexistence of a completely regular $2$-graph on $288$ points, Einghoven Univ. Techn. Report No 84-WSK-03, ed. J. H. van Lint, 1984, p. 6–19. Papers dedicated to J. J. Seidel | Zbl
[8] Cameron P. J., “Several $2-(6,4,3)$ designs”, Discrete Math., 87 (1991), 89–90 | DOI | MR | Zbl
[9] Pasechnik D. V., “Extending polar spaces of rank at least 3”, J. Comb. Theory (A), 72 (1995), 232–242 | DOI | MR | Zbl
[10] Cameron P. J., Hughes D. R., Pasini A., “Extended generalized quadrangles”, Geom. Dedic., 35 (1990), 193–228 | DOI | MR | Zbl