$GQ(4,2)$-extensions, strongly regular case
Matematičeskie zametki, Tome 68 (2000) no. 1, pp. 113-119.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_2000_68_1_a11,
     author = {A. A. Makhnev},
     title = {$GQ(4,2)$-extensions, strongly regular case},
     journal = {Matemati\v{c}eskie zametki},
     pages = {113--119},
     publisher = {mathdoc},
     volume = {68},
     number = {1},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2000_68_1_a11/}
}
TY  - JOUR
AU  - A. A. Makhnev
TI  - $GQ(4,2)$-extensions, strongly regular case
JO  - Matematičeskie zametki
PY  - 2000
SP  - 113
EP  - 119
VL  - 68
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2000_68_1_a11/
LA  - ru
ID  - MZM_2000_68_1_a11
ER  - 
%0 Journal Article
%A A. A. Makhnev
%T $GQ(4,2)$-extensions, strongly regular case
%J Matematičeskie zametki
%D 2000
%P 113-119
%V 68
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2000_68_1_a11/
%G ru
%F MZM_2000_68_1_a11
A. A. Makhnev. $GQ(4,2)$-extensions, strongly regular case. Matematičeskie zametki, Tome 68 (2000) no. 1, pp. 113-119. http://geodesic.mathdoc.fr/item/MZM_2000_68_1_a11/

[1] Buekenhout F., Hubaut X., “Locally polar spaces and related rank 3 groups”, J. Algebra, 45:2 (1977), 391–434 | DOI | MR | Zbl

[2] Makhnev A. A., “Locally $GQ(3,5)$-graphs and geometries with short lines”, Vseukrainskaya konferentsiya pamyati P. S. Kazimirskogo, Tezisy dokl., Lvov, 1995, 59–60

[3] Makhnev A. A., “Konechnye lokalno $GQ(3,3)$ grafy”, Sib. matem. zh., 35:6 (1994), 1314–1324 | MR | Zbl

[4] Pasechnik D. V., “The triangular extensions of a generalized quadrangle of order $(3,3)$”, Bull. Belg. Math. Soc., 2 (1995), 509–518 | MR | Zbl

[5] Pasechnik D. V., “The extensions of the generalized quadrangle of order $(3,9)$”, Eur. J. Comb., 17 (1996), 751–755 | DOI | MR | Zbl

[6] Pain S., Thas J. A., Finite Generalized Quadrangles, Pitman, Boston, 1984

[7] Blokhuis A., Brouwer A. E., Uniqueness of a Zara graph on $126$ points and nonexistence of a completely regular $2$-graph on $288$ points, Einghoven Univ. Techn. Report No 84-WSK-03, ed. J. H. van Lint, 1984, p. 6–19. Papers dedicated to J. J. Seidel | Zbl

[8] Cameron P. J., “Several $2-(6,4,3)$ designs”, Discrete Math., 87 (1991), 89–90 | DOI | MR | Zbl

[9] Pasechnik D. V., “Extending polar spaces of rank at least 3”, J. Comb. Theory (A), 72 (1995), 232–242 | DOI | MR | Zbl

[10] Cameron P. J., Hughes D. R., Pasini A., “Extended generalized quadrangles”, Geom. Dedic., 35 (1990), 193–228 | DOI | MR | Zbl