On the solvability of equations of a nonlinear viscous-ideal fluid
Matematičeskie zametki, Tome 68 (2000) no. 1, pp. 13-23.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_2000_68_1_a1,
     author = {I. V. Basov},
     title = {On the solvability of equations of a nonlinear viscous-ideal fluid},
     journal = {Matemati\v{c}eskie zametki},
     pages = {13--23},
     publisher = {mathdoc},
     volume = {68},
     number = {1},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2000_68_1_a1/}
}
TY  - JOUR
AU  - I. V. Basov
TI  - On the solvability of equations of a nonlinear viscous-ideal fluid
JO  - Matematičeskie zametki
PY  - 2000
SP  - 13
EP  - 23
VL  - 68
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2000_68_1_a1/
LA  - ru
ID  - MZM_2000_68_1_a1
ER  - 
%0 Journal Article
%A I. V. Basov
%T On the solvability of equations of a nonlinear viscous-ideal fluid
%J Matematičeskie zametki
%D 2000
%P 13-23
%V 68
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2000_68_1_a1/
%G ru
%F MZM_2000_68_1_a1
I. V. Basov. On the solvability of equations of a nonlinear viscous-ideal fluid. Matematičeskie zametki, Tome 68 (2000) no. 1, pp. 13-23. http://geodesic.mathdoc.fr/item/MZM_2000_68_1_a1/

[1] Truesdell C., A First Course in Rational Continuum Mechanics. V. 1. General Concepts, 2nd edition, Academic Press, San Diego–London, 1991

[2] Antontsev S. N., Kazhikhov A. V., Monakhov V. N., Kraevye zadachi mekhaniki neodnorodnykh zhidkostei, Nauka, Novosibirsk, 1983 | Zbl

[3] Vaigant V. A., “Neodnorodnye zadachi dlya uravnenii vyazkogo teploprovodnogo gaza”, Dinamika sploshnoi sredy. Vyp. 97. Matematicheskie problemy mekhaniki sploshnykh sred, In-t Gidrodinamiki SO AN SSSR, Novosibirsk, 1990, 3–21 | MR

[4] Amosov A. A., Zlotnik A. A., “Razreshimost “v tselom” odnogo klassa kvazilineinykh sistem uravnenii sostavnogo tipa s negladkimi dannymi”, Differents. uravneniya, 30 (4) (1994), 596–609 | MR | Zbl

[5] Vaigant V. A., Kazhikhov A. V., “O suschestvovanii globalnykh reshenii dvumernykh uravnenii Nave–Stoksa szhimaemoi vyazkoi zhidkosti”, Sib. matem. zh., 36 (6) (1995), 1283–1316 | MR | Zbl

[6] Málek J., Nečas J., Rokyta M., Růžička M., Weak and measure-valued solutions to evolutionary PDEs, Applied Mathematics and Mathematical Computation, 13, Chapman Hall, London, 1996 | MR | Zbl

[7] Mamontov A. E., Orlicz spaces in the existense problem of global solutions to viscous compressible nonlinear fluid equations, Preprint SO RAN No. 2-96, In-t gidrodinamiki, Novosibirsk, 1996

[8] Showalter W. R., Mechanics of non-Newtonian fluids, Pergamon Press, Oxford, 1978

[9] Shelukhin V. V., “A shear flow problem for the compressible Navier-Stokes equations”, Internat. J. Non-Linear Mech., 33 (2) (1998), 247–257 | DOI | MR | Zbl

[10] Simon J., “Compact sets in the space $L_p(0,T;B)$”, Ann. Matematica Pura ed Applicata (IV), VCXLVI (1987), 65–69

[11] Tartar L., “Compensated compactness and application to P.D.E.”, Nonlinear Analysis and Mechanics, 4, Heriot–Watt Symposium, Pitman Reseach Notes in Math. Series, 39, ed. R. J. Knops, 1979, 136–212 | MR | Zbl