On the maximal quadratic function for power-bounded operators in~$L^p$
Matematičeskie zametki, Tome 67 (2000) no. 6, pp. 950-953.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_2000_67_6_a15,
     author = {V. F. Gaposhkin},
     title = {On the maximal quadratic function for power-bounded operators in~$L^p$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {950--953},
     publisher = {mathdoc},
     volume = {67},
     number = {6},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2000_67_6_a15/}
}
TY  - JOUR
AU  - V. F. Gaposhkin
TI  - On the maximal quadratic function for power-bounded operators in~$L^p$
JO  - Matematičeskie zametki
PY  - 2000
SP  - 950
EP  - 953
VL  - 67
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2000_67_6_a15/
LA  - ru
ID  - MZM_2000_67_6_a15
ER  - 
%0 Journal Article
%A V. F. Gaposhkin
%T On the maximal quadratic function for power-bounded operators in~$L^p$
%J Matematičeskie zametki
%D 2000
%P 950-953
%V 67
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2000_67_6_a15/
%G ru
%F MZM_2000_67_6_a15
V. F. Gaposhkin. On the maximal quadratic function for power-bounded operators in~$L^p$. Matematičeskie zametki, Tome 67 (2000) no. 6, pp. 950-953. http://geodesic.mathdoc.fr/item/MZM_2000_67_6_a15/

[1] Gaposhkin V. F., Teor. veroyatn. i ee primeneniya, 44:2 (1999), 432–440 | MR | Zbl

[2] Olevskiǐ A. M., Fourier Series with respect to General Orthogonal Systems, Springer-Verlag, Berlin, 1975 | Zbl

[3] Blanc-Lapierre A., Tortra A., C. R. Acad. Sci. Paris. Ser. A, 267 (1968), 740–743 | MR | Zbl

[4] Gaposhkin V. F., Tr. MIREA, 67 (1974), 95–96

[5] Assani I., Canad. J. Math., 1986, no. 4, 937–946 | MR | Zbl