Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2000_67_6_a0, author = {E. L. Aleksandrov}, title = {Spectral functions of self-adjoint and symmetric multiplication operators in $L^2(X,\mu)$-spaces}, journal = {Matemati\v{c}eskie zametki}, pages = {803--810}, publisher = {mathdoc}, volume = {67}, number = {6}, year = {2000}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2000_67_6_a0/} }
TY - JOUR AU - E. L. Aleksandrov TI - Spectral functions of self-adjoint and symmetric multiplication operators in $L^2(X,\mu)$-spaces JO - Matematičeskie zametki PY - 2000 SP - 803 EP - 810 VL - 67 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2000_67_6_a0/ LA - ru ID - MZM_2000_67_6_a0 ER -
E. L. Aleksandrov. Spectral functions of self-adjoint and symmetric multiplication operators in $L^2(X,\mu)$-spaces. Matematičeskie zametki, Tome 67 (2000) no. 6, pp. 803-810. http://geodesic.mathdoc.fr/item/MZM_2000_67_6_a0/
[1] Sobolev V. V., Kurs teoreticheskoi astrofiziki, Nauka, M., 1967
[2] Akhiezer N. I., Glazman I. M., Teoriya lineinykh operatorov v gilbertovom prostranstve, Nauka, M., 1966 | Zbl
[3] Aleksandrov E. L., Operatory v prostranstvakh $L^2(X,\mu )$ i nekotorye ikh prilozheniya, Dep. v VINITI 14.04.97 No. 1245-B97, Saratov, 1997
[4] Vo-Khac-Khoan, Distribution, Analyse de Fourier. Operateurs aux derivées partielles, V. 1, 2, Vuibert, Paris, 1967
[5] Aleksandrov E. L., “Spektralnye svoistva operatorov s yadrami, zavisyaschimi ot raznosti argumentov”, Izv. vuzov. Matem., 1991, no. 8 (351), 3–8
[6] Aleksandrov E. L., Ilmushkin G. M., “Obobschennye rezolventy izometricheskikh i simmetricheskikh operatorov”, Izv. vuzov. Matem., 1977, no. 1 (176), 14–23 | MR | Zbl