Wavelet decomposition of the space of discrete periodic splines
Matematičeskie zametki, Tome 67 (2000) no. 5, pp. 712-720
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{MZM_2000_67_5_a8,
author = {V. A. Kirushev and V. N. Malozemov and A. B. Pevnyi},
title = {Wavelet decomposition of the space of discrete periodic splines},
journal = {Matemati\v{c}eskie zametki},
pages = {712--720},
year = {2000},
volume = {67},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2000_67_5_a8/}
}
V. A. Kirushev; V. N. Malozemov; A. B. Pevnyi. Wavelet decomposition of the space of discrete periodic splines. Matematičeskie zametki, Tome 67 (2000) no. 5, pp. 712-720. http://geodesic.mathdoc.fr/item/MZM_2000_67_5_a8/
[1] Behr M. G., Malozemov V. N., Pevnyi A. B., “A discrete version of spline-operational calculus.”, International Conference on Optimization of Finite Element Approximations, Abstracts, St. Petersburg, 1995, 35
[2] Kamada M., Toraichi K., Mori R., “Periodic spline orthogonal bases”, J. Approx. Theory, 55:1 (1988), 27–34 | DOI | MR | Zbl
[3] Zheludev V. A., “O veivletakh na baze periodicheskikh splainov”, Dokl. RAN, 335:1 (1994), 9–13 | Zbl
[4] Narcowich F. J., Ward J. D., “Wavelets associated with periodic basis functions”, Appl. Comput. Harmonic Anal., 3:1 (1996), 40–56 | DOI | MR | Zbl
[5] Petukhov A. P., “Periodicheskie diskretnye vspleski”, Algebra i analiz, 8:3 (1996), 151–183 | MR