Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2000_67_5_a8, author = {V. A. Kirushev and V. N. Malozemov and A. B. Pevnyi}, title = {Wavelet decomposition of the space of discrete periodic splines}, journal = {Matemati\v{c}eskie zametki}, pages = {712--720}, publisher = {mathdoc}, volume = {67}, number = {5}, year = {2000}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2000_67_5_a8/} }
TY - JOUR AU - V. A. Kirushev AU - V. N. Malozemov AU - A. B. Pevnyi TI - Wavelet decomposition of the space of discrete periodic splines JO - Matematičeskie zametki PY - 2000 SP - 712 EP - 720 VL - 67 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2000_67_5_a8/ LA - ru ID - MZM_2000_67_5_a8 ER -
V. A. Kirushev; V. N. Malozemov; A. B. Pevnyi. Wavelet decomposition of the space of discrete periodic splines. Matematičeskie zametki, Tome 67 (2000) no. 5, pp. 712-720. http://geodesic.mathdoc.fr/item/MZM_2000_67_5_a8/
[1] Behr M. G., Malozemov V. N., Pevnyi A. B., “A discrete version of spline-operational calculus.”, International Conference on Optimization of Finite Element Approximations, Abstracts, St. Petersburg, 1995, 35
[2] Kamada M., Toraichi K., Mori R., “Periodic spline orthogonal bases”, J. Approx. Theory, 55:1 (1988), 27–34 | DOI | MR | Zbl
[3] Zheludev V. A., “O veivletakh na baze periodicheskikh splainov”, Dokl. RAN, 335:1 (1994), 9–13 | Zbl
[4] Narcowich F. J., Ward J. D., “Wavelets associated with periodic basis functions”, Appl. Comput. Harmonic Anal., 3:1 (1996), 40–56 | DOI | MR | Zbl
[5] Petukhov A. P., “Periodicheskie diskretnye vspleski”, Algebra i analiz, 8:3 (1996), 151–183 | MR