Partitions of groups into absolutely dense subsets
Matematičeskie zametki, Tome 67 (2000) no. 5, pp. 706-711.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_2000_67_5_a7,
     author = {E. G. Zelenyuk},
     title = {Partitions of groups into absolutely dense subsets},
     journal = {Matemati\v{c}eskie zametki},
     pages = {706--711},
     publisher = {mathdoc},
     volume = {67},
     number = {5},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2000_67_5_a7/}
}
TY  - JOUR
AU  - E. G. Zelenyuk
TI  - Partitions of groups into absolutely dense subsets
JO  - Matematičeskie zametki
PY  - 2000
SP  - 706
EP  - 711
VL  - 67
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2000_67_5_a7/
LA  - ru
ID  - MZM_2000_67_5_a7
ER  - 
%0 Journal Article
%A E. G. Zelenyuk
%T Partitions of groups into absolutely dense subsets
%J Matematičeskie zametki
%D 2000
%P 706-711
%V 67
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2000_67_5_a7/
%G ru
%F MZM_2000_67_5_a7
E. G. Zelenyuk. Partitions of groups into absolutely dense subsets. Matematičeskie zametki, Tome 67 (2000) no. 5, pp. 706-711. http://geodesic.mathdoc.fr/item/MZM_2000_67_5_a7/

[1] Comfort W. W., van Mill J., “Groups with only resolvable group topologies”, Proc. Amer. Math. Soc., 120:3 (1994), 687–696 | DOI | MR | Zbl

[2] Protasov I. V., “Razlozhimost grupp”, Matematichni studii, 9 (1998), 130–148 | MR | Zbl

[3] Zelenyuk E. G., “Razlozhimost topologicheskikh grupp”, Ukr. matem. zh., 51:1 (1999), 41–47 | MR | Zbl

[4] Protasov I. V., “Absolyutno razlozhimye gruppy”, Ukr. matem. zh., 48:3 (1996), 383–392 | MR | Zbl

[5] Nereshennye voprosy teorii grupp. Kourovskaya tetrad, In-t matematiki, Novosibirsk, 1995

[6] Grekhem R., Nachalo teorii Ramseya, Mir, M., 1984

[7] Hindman N., Strauss D., Algebra in the Stone–Čech compactification—theory and applications, de Gruyter, Berlin, 1998 | Zbl

[8] Protasov I. V., “Ultrafiltry i topologii na gruppakh”, Sib. matem. zh., 34:5 (1993), 163–180 | MR | Zbl