Global comparison of finite-dimensional reduction schemes in smooth variational problems
Matematičeskie zametki, Tome 67 (2000) no. 5, pp. 745-754.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_2000_67_5_a12,
     author = {Yu. I. Sapronov and S. L. Tsarev},
     title = {Global comparison of finite-dimensional reduction schemes in smooth variational problems},
     journal = {Matemati\v{c}eskie zametki},
     pages = {745--754},
     publisher = {mathdoc},
     volume = {67},
     number = {5},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2000_67_5_a12/}
}
TY  - JOUR
AU  - Yu. I. Sapronov
AU  - S. L. Tsarev
TI  - Global comparison of finite-dimensional reduction schemes in smooth variational problems
JO  - Matematičeskie zametki
PY  - 2000
SP  - 745
EP  - 754
VL  - 67
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2000_67_5_a12/
LA  - ru
ID  - MZM_2000_67_5_a12
ER  - 
%0 Journal Article
%A Yu. I. Sapronov
%A S. L. Tsarev
%T Global comparison of finite-dimensional reduction schemes in smooth variational problems
%J Matematičeskie zametki
%D 2000
%P 745-754
%V 67
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2000_67_5_a12/
%G ru
%F MZM_2000_67_5_a12
Yu. I. Sapronov; S. L. Tsarev. Global comparison of finite-dimensional reduction schemes in smooth variational problems. Matematičeskie zametki, Tome 67 (2000) no. 5, pp. 745-754. http://geodesic.mathdoc.fr/item/MZM_2000_67_5_a12/

[1] Krasnoselskii M. A., Bobylev N. A., Mukhamadiev E. M., “Ob odnoi skheme issledovaniya vyrozhdennykh ekstremalei funktsionalov klassicheskogo variatsionnogo ischisleniya”, Dokl. AN SSSR, 240:3 (1978), 530–533 | MR | Zbl

[2] Conley C. C., Zehnder E., “The Birkhoff–Lewis fixed point theorem and a conjecture of V. I. Arnol'd”, Invent. Math., 73 (1983), 33–49 | DOI | MR | Zbl

[3] Bolotin S. V., “Periodicheskie resheniya sistemy s giroskopicheskimi silami”, PMM, 51:4 (1987), 686–687 | MR

[4] Sapronov Yu. I., “Konechnomernye reduktsii v gladkikh ekstremalnykh zadachakh”, UMN, 51:1 (1996), 101–132 | MR

[5] Tsarev S. L., “Comparison of key functions for smooth functionals”, Stochastic and Global Analysis, Abstracts of Int. Conf., VSU, Voronezh, 1997, 68

[6] Sapronov Yu. I., “Nelokalnye konechnomernye reduktsii v variatsionnykh kraevykh zadachakh”, Matem. zametki, 49:1 (1991), 94–103 | MR

[7] Sapronov Yu. I., “Suschestvovanie i sravnenie konechnomernykh reduktsii dlya gladkikh funktsionalov”, Globalnyi i stokhasticheskii analiz, Nauchn. sb., Izd. VGU, Voronezh, 1995, 69–90 | MR | Zbl

[8] Puankare A., Izbrannye trudy v trekh tomakh, Novye metody nebesnoi mekhaniki. Topologiya. Teoriya chisel, Nauka, M., 1972

[9] Arnold V. I., Varchenko A. N., Gusein-Zade S. M., Osobennosti differentsiruemykh otobrazhenii. Klassifikatsiya kriticheskikh tochek, kaustik i volnovykh frontov, Nauka, M., 1982

[10] Poston T., Styuart I., Teoriya katastrof i ee prilozheniya, Mir, M., 1980 | Zbl

[11] Popov E. P., Nelineinye zadachi statiki tonkikh sterzhnei, OGIZ, M., 1948

[12] Levchenko O. N., Sapronov Yu. I., “Morse–Bott reduction for a symmetric Kirchhoff rood”, Methods and Applications of Global Analysis, Voronezh Univ. Press, 1993, 95–100 | MR | Zbl

[13] Borisovich Yu. G., Zvyagin V. G., Sapronov Yu. I., “Nelineinye fredgolmovy otobrazheniya i teoriya Lere–Shaudera”, UMN, 32:4 (1977), 3–54 | MR | Zbl