Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2000_67_5_a11, author = {Nguyen Xuan Thao}, title = {A~basis analog of the $H$-function of several variables}, journal = {Matemati\v{c}eskie zametki}, pages = {738--744}, publisher = {mathdoc}, volume = {67}, number = {5}, year = {2000}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2000_67_5_a11/} }
Nguyen Xuan Thao. A~basis analog of the $H$-function of several variables. Matematičeskie zametki, Tome 67 (2000) no. 5, pp. 738-744. http://geodesic.mathdoc.fr/item/MZM_2000_67_5_a11/
[1] Fox C., “The $G$- and $H$-function as symmetrical Fouriers kernels”, Trans. Amer. Math. Soc., 1961, no. 3, 395–429 | DOI | Zbl
[2] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady: dopolnitelnye glavy, Nauka, M., 1986
[3] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, T. 1–3, Nauka, M., 1965–67
[4] Bora S. L., Kalla S. L., “Some results involving generalized functions of two variables”, Kyungpook Math. J., 10 (1970), 133–140 | MR | Zbl
[5] Verma R. U., “On the $H$-function of two variables, 1”, Indian J. Pure Appl. Math., 5:7 (1974), 616–623 | MR | Zbl
[6] Buschman R. G., “$H$-functions of two variables, 1”, Indian J. Math., 20:2 (1978), 139–153 | MR
[7] Vu Kim Tuan, Integralnye preobrazovaniya, ikh kompozitsionnaya struktura, Diss. ... d. f.-m. n., Minsk, 1987
[8] Nguen Tkhan Khai, “O kriterii opredeleniya skhodimosti dvoinykh integralov Mellina–Barnsa”, Izv. AN BSSR. Ser. fiz.-mat. nauk, 1992, no. 1, 25–31
[9] Nguyen Thanh Hai, Marichev O. I., Buschman R. G., “Theory of the general $H$-function of two variables”, Rocky Mountain J. Math., 22:4 (1992), 1317–1327 | DOI | MR | Zbl
[10] Buschman R. G., “$H$-functions of $N$ variables”, Ranchi Univ. Math. J., 10 (1979), 81–88 | MR | Zbl
[11] Nguyen Thanh Hai, “Convergence regions for multiple hypergeometric integrals representing $H$-functions in several variables”, Integral Transforms and Special Function, 1 (1993), 313–314 | DOI | MR | Zbl
[12] Nguen Suan Tkhao, Svertki integralnykh preobrazovanii i obobschennaya $H$-funktsiya, Diss. ... k. f.-m. n., Novgorod, 1995
[13] Kakichev V. A., Nguen Suan Tkhao, “Svertki obobschennykh $H$-preobrazovanii”, Izv. vuzov. Matem., 1994, no. 8, 21–28 | MR | Zbl
[14] Saxena R. K., Modi G. C., Kalla S. L., “A basic analogue of Fox's $H$-function”, Rev. Tec. Ing. Univ. Zulia, 6 (1983), 139–143 | MR | Zbl
[15] Saxena R. K., Kumar R., “Recurrence relations for the basic analogue of $H$-function”, Nat. Acad. Math., 8 (1990), 48–54 | MR | Zbl
[16] Askey R., “The $q$-gamma and $q$-beta functions”, Applicable Anal., 8 (1978), 125–141 | DOI | MR | Zbl
[17] Marichev O. I., Vu Kim Tuan, “Nekotorye svoistva $q$-gamma funktsii”, Dokl. AN BSSR, 26:6 (1982), 488–491 | MR | Zbl
[18] Saxena R. K., “On the $H$-function of $n$ variables. 1; 2”, Kyungpook Math. J., 17 (1977), 221–226 ; Kyungpook Math. J., 20 (1980), 273–278 | MR | Zbl | MR | Zbl
[19] Marichev O. I., Vu Kim Tuan, “The problems of definitions and symbols of $G$- and $H$-functions of several variables”, Rev. Tec. Ing., Univ. Zulia, Edicion Especial, 6 (1983), 144–151 | MR | Zbl
[20] Braaksma B. L. J., “Asymptotic expansions and analytic continuations for a class of Barnes integrals”, Comp. Math., 15 (1964), 239–341 | MR
[21] Hahn W., “Beiträge zur Theorie der Heineschen Reihen, Die 24 Integrale der hypergeometrischen $q$-Differenzengleichung, Das $q$-Analogen der Laplace Transformation”, Math. Nachr., 2 (1949), 340–379 | DOI | MR | Zbl
[22] Gasper Dzh., Rakhman M., Bazisnye gipergeometricheskie ryady, Mir, M., 1993 | Zbl