@article{MZM_2000_67_5_a1,
author = {V. A. Baskakov},
title = {On conditions for and the order of approximation of functions by operators of class $S_{2m}$},
journal = {Matemati\v{c}eskie zametki},
pages = {654--661},
year = {2000},
volume = {67},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2000_67_5_a1/}
}
V. A. Baskakov. On conditions for and the order of approximation of functions by operators of class $S_{2m}$. Matematičeskie zametki, Tome 67 (2000) no. 5, pp. 654-661. http://geodesic.mathdoc.fr/item/MZM_2000_67_5_a1/
[1] Korovkin P. P., “Skhodyaschiesya posledovatelnosti lineinykh operatorov”, UMN, 17:4 (106) (1962), 147–152 | MR | Zbl
[2] Korovkin P. P., “Ob odnom asimptoticheskom svoistve polozhitelnykh metodov summirovaniya ryadov Fure i o nailuchshem priblizhenii klassa $\mathbb Z_2$ lineinymi polozhitelnymi polinomialnymi operatorami”, UMN, 13:6 (84) (1958), 99–103 | MR | Zbl
[3] Korovkin P. P., “O poryadke priblizheniya funktsii lineinymi polinomialnymi operatorami klassa $S_m$”, Issledovaniya po sovremennym problemam konstruktivnoi teorii funktsii, Izd. AN AzSSR, Baku, 1965, 163–166 | MR
[4] Kovalenko A. I., “O nekotorykh metodakh summirovaniya ryadov Fure”, Matem. sb., 71 (113):4 (1966), 598–616 | MR | Zbl
[5] Szabados J., “On convolution operators with kernels of finite oscillation”, Acta Math. Acad. Sci. Hung., 27:1–2 (1976), 179–192 | DOI | MR | Zbl
[6] Vassiliev R. K., “Certaines méthodes de sommation de séries de Fourier donnant le meilleur ordre d'approximation”, Acta Math. Acad. Sci. Hung., 63:1 (1994), 65–102 | MR | Zbl
[7] Vasilev R. K., “Metody summirovaniya ryadov Fure, dayuschie nailuchshii poryadok priblizheniya”, Matem. zametki, 54:2 (1993), 145–151 | Zbl
[8] Gelfond A. O., Ischislenie konechnykh raznostei, Gostekhizdat, M.–L., 1952
[9] Dahmen W., Görlich E., “A conjecture of M. Golomb on optimal and nearly-optimal linear approximation”, Bull. Amer. Math. Soc., 80:6 (1974), 1199–1202 | DOI | MR | Zbl
[10] Baskakov V. A., Lineinye metody summirovaniya ryadov Fure i priblizhenie nepreryvnykh funktsii, KGU, Kalinin, 1980
[11] Butzer P. L., Stark E. L., “On a trigonometric covolution operator with kernel having two zeros of simple multiplicity”, Acta Math. Acad. Sci. Hung., 20:3–4 (1969), 451–461 | DOI | MR | Zbl