Extending the factorization principle to hypergeometric series of general form
Matematičeskie zametki, Tome 67 (2000) no. 4, pp. 573-581.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_2000_67_4_a10,
     author = {A. W. Niukkanen},
     title = {Extending the factorization principle to hypergeometric series of general form},
     journal = {Matemati\v{c}eskie zametki},
     pages = {573--581},
     publisher = {mathdoc},
     volume = {67},
     number = {4},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2000_67_4_a10/}
}
TY  - JOUR
AU  - A. W. Niukkanen
TI  - Extending the factorization principle to hypergeometric series of general form
JO  - Matematičeskie zametki
PY  - 2000
SP  - 573
EP  - 581
VL  - 67
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2000_67_4_a10/
LA  - ru
ID  - MZM_2000_67_4_a10
ER  - 
%0 Journal Article
%A A. W. Niukkanen
%T Extending the factorization principle to hypergeometric series of general form
%J Matematičeskie zametki
%D 2000
%P 573-581
%V 67
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2000_67_4_a10/
%G ru
%F MZM_2000_67_4_a10
A. W. Niukkanen. Extending the factorization principle to hypergeometric series of general form. Matematičeskie zametki, Tome 67 (2000) no. 4, pp. 573-581. http://geodesic.mathdoc.fr/item/MZM_2000_67_4_a10/

[1] Niukkanen A. W., “Generalized operator reduction formulae for multiple hypergeometric series ${}^N\!F(x_1,\dots,x_N)$”, J. Phys. A. Math. Gen., 17 (1984), 731–736 | DOI | MR

[2] Niukkanen A. V., “Novyi metod v teorii gipergeometricheskikh ryadov i spetsialnykh funktsii matematicheskoi fiziki”, Uspekhi matem. nauk, 43:3 (1988), 191–192 | MR

[3] Niukkanen A. V., “Novyi podkhod k teorii gipergeometricheskikh ryadov i spetsialnykh funktsii matematicheskoi fiziki”, Matem. zametki, 50:1 (1991), 65–73 | MR | Zbl

[4] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, T. 1, Nauka, M., 1973

[5] Srivastava H. M., Karlsson P. W., Multiple hypergeometric series, Ellis Hoorwood, Chichester, 1985 | Zbl

[6] Gelfand I. M., Graev M. I., Retakh V. S., $\Gamma $-ryady i obschie gipergeometricheskie funktsii na mnogoobrazii $(k\times n)$-matrits, Preprint IPM, No 64, 1990

[7] Gelfand I. M., Graev M. I., “Gipergeometricheskie funktsii, svyazannye s grassmanianom $G_{3,6}$”, Matem. sb., 180:1 (1989), 3–38 | Zbl

[8] Gelfand I. M., Graev M. I., Retakh V. S., “Obschie gipergeometricheskie sistemy uravnenii i ryady gipergeometricheskogo tipa”, Uspekhi matem. nauk, 47:4 (1992), 3–82 | MR | Zbl

[9] Gelfand I. M., Shilov G. E., Obobschennye funktsii i deistviya nad nimi, Fizmatgiz, M, 1958 | Zbl

[10] Erdélyi A., “Transformations of hypergeometric functions of two variables”, Proc. Roy. Soc. Edinburg Sect. A, 62 (1948), 378–385 | MR | Zbl

[11] Bailey W. N., Generalized hypergeometric series, Cambridge University Press, Cambridge, 1935 | Zbl

[12] Erdélyi A., “Hypergeometric functions of two variables”, Acta Math., 83 (1950), 131–164 | DOI | MR | Zbl