Representation of Green's function for the heat equation on a~compact Lie group
Matematičeskie zametki, Tome 67 (2000) no. 3, pp. 397-413.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_2000_67_3_a8,
     author = {M. G. Smirnova},
     title = {Representation of {Green's} function for the heat equation on a~compact {Lie} group},
     journal = {Matemati\v{c}eskie zametki},
     pages = {397--413},
     publisher = {mathdoc},
     volume = {67},
     number = {3},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2000_67_3_a8/}
}
TY  - JOUR
AU  - M. G. Smirnova
TI  - Representation of Green's function for the heat equation on a~compact Lie group
JO  - Matematičeskie zametki
PY  - 2000
SP  - 397
EP  - 413
VL  - 67
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2000_67_3_a8/
LA  - ru
ID  - MZM_2000_67_3_a8
ER  - 
%0 Journal Article
%A M. G. Smirnova
%T Representation of Green's function for the heat equation on a~compact Lie group
%J Matematičeskie zametki
%D 2000
%P 397-413
%V 67
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2000_67_3_a8/
%G ru
%F MZM_2000_67_3_a8
M. G. Smirnova. Representation of Green's function for the heat equation on a~compact Lie group. Matematičeskie zametki, Tome 67 (2000) no. 3, pp. 397-413. http://geodesic.mathdoc.fr/item/MZM_2000_67_3_a8/

[1] Iosida K., Funktsionalnyi analiz, Mir, M., 1967

[2] Kheier Kh., Veroyatnostnye mery na lokalno kompaktnykh gruppakh, Mir, M., 1981

[3] Malliavin M., Malliavin P., “Integration on loop groups. Quasi–invariant measures”, JFA, 93 (1990), 207–237 | DOI | MR | Zbl

[4] Malliavin M., Malliavin P., “Integration on loop groups. Asymptotic Peter–Weyl orthogonality”, JFA, 108 (1992), 13–46 | DOI | MR | Zbl

[5] Leandre R., “Integration by parts formulas and rotationally invariant Sobolev calculus on free loop spaces”, J. Geom. Phys., 1993, no. 11, 517–528 | DOI | MR | Zbl

[6] Airault H., Malliavin P., “Integration on loop groups. Heat equation for the Wiener measure”, JFA, 104 (1992), 71–109 | DOI | MR | Zbl

[7] Albeverio S., Hoegh-Krohn R., “The energy representation of a Sobolev Lie Group”, Compositive Math., 36 (1978), 37–52

[8] Barut A., Ronchka R., Teoriya predstavlenii grupp i ee prilozheniya, Mir, M., 1980 | Zbl

[9] Feynmann R., “Space-time approach to non-relativistic quantum mechanics”, Rev. Mod. Phys., 20 (1948), 367 | DOI

[10] Nelson E., “Feynmann integrals and the Schrödinger equations”, J. Math. Phys., 5 (1964), 332 | DOI | Zbl

[11] Smolyanov O. G., “Gladkie mery na gruppakh petel”, Dokl. RAN, 345:4 (1995), 455–458 | MR | Zbl

[12] Uorner F., Osnovy teorii gladkikh mnogoobrazii i grupp Li, Bibfizmat, M., 1990

[13] Vinberg E. B., Kompaktnye gruppy Li, Izd-vo MGU, M., 1967

[14] Venttsel A. D., Kurs teorii sluchainykh protsessov, Nauka, M., 1996 | Zbl