On the best constant in the inf-sup condition for elongated rectangular domains
Matematičeskie zametki, Tome 67 (2000) no. 3, pp. 387-396.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_2000_67_3_a7,
     author = {M. A. Ol'shanskii and E. V. Chizhonkov},
     title = {On the best constant in the inf-sup condition for elongated rectangular domains},
     journal = {Matemati\v{c}eskie zametki},
     pages = {387--396},
     publisher = {mathdoc},
     volume = {67},
     number = {3},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2000_67_3_a7/}
}
TY  - JOUR
AU  - M. A. Ol'shanskii
AU  - E. V. Chizhonkov
TI  - On the best constant in the inf-sup condition for elongated rectangular domains
JO  - Matematičeskie zametki
PY  - 2000
SP  - 387
EP  - 396
VL  - 67
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2000_67_3_a7/
LA  - ru
ID  - MZM_2000_67_3_a7
ER  - 
%0 Journal Article
%A M. A. Ol'shanskii
%A E. V. Chizhonkov
%T On the best constant in the inf-sup condition for elongated rectangular domains
%J Matematičeskie zametki
%D 2000
%P 387-396
%V 67
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2000_67_3_a7/
%G ru
%F MZM_2000_67_3_a7
M. A. Ol'shanskii; E. V. Chizhonkov. On the best constant in the inf-sup condition for elongated rectangular domains. Matematičeskie zametki, Tome 67 (2000) no. 3, pp. 387-396. http://geodesic.mathdoc.fr/item/MZM_2000_67_3_a7/

[1] Dyakonov E. G., Minimizatsiya vychislitelnoi raboty. Asimptoticheski optimalnye algoritmy dlya ellipticheskikh zadach, Nauka, M., 1989 | Zbl

[2] Girault V., Raviart P. A., Finite element methods for Navier-Stokes equations, Springer, Berlin, 1986 | Zbl

[3] Langer U., Queck W., “On the convergence factor of Uzawa's algorithm”, J. Comp. Appl. Math., 15 (1986), 191–202 | DOI | MR | Zbl

[4] Chizhonkov E. V., “K skhodimosti metoda iskusstvennoi szhimaemosti.”, Vestn. MGU. Ser. 1. Matem., mekh., 1996, no. 2, 13–20 | MR

[5] Chizhonkov E. V., “Application of the Cossera spectrum to the optimization of a method for solving the Stokes Problem”, Russ. Journal of Numer. Analysis and Math. Modelling, 9:3 (1994), 191–199 | MR | Zbl

[6] Mikhlin S. G., “Spektr puchka operatorov teorii uprugosti”, UMN, 28:3 (1973), 43–82 | Zbl

[7] Cosserat E. et F., “Sur la déformation infiniment petite d'une enveloppe sphérique élastique”, C. R. Acad. Sci. Paris, 133 (1901), 326–329

[8] Chizhonkov E. V., On the Constant in the LBB condition for ring domains, Report No 9537 (October 1995), Dept. of Math. Univ. of Nijmegen, The Netherlands, 1995

[9] Crouzeix M., “Etude d'une methode de linearisation. Resolution des equations de Stokes stationaries. Application aux equations des Navier–Stokes stationares”, Cahiere de l'IRIA, 1974, no. 12, 139–244

[10] Mikhlin S. G., “Dalneishee issledovanie spektra Kossera”, Vestn. LGU. Ser. Matem., 7:2 (1967), 96–102 | MR | Zbl

[11] Kobelkov G. M., “Ob ekvivalentnykh normirovkakh podprostranstv $L_2$”, Anal. Math., 1977, no. 3, 177–186 | DOI | MR | Zbl

[12] Olshanskii M. A., “Zadacha Stoksa s modelnymi kraevymi usloviyami”, Matem. sb., 188:4 (1997), 127–144 | MR

[13] Aristov P. P., Chizhonkov E. V., On the Constant in the LBB condition for rectangular domains, Report No 9534 (September 1995), Dept. of Math. Univ. of Nijmegen, The Netherlands, 1995