Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2000_67_3_a5, author = {I. M. Nabiev}, title = {Multiplicities and relative position of eigenvalues of a~quadratic pencil of {Sturm--Liouville} operators}, journal = {Matemati\v{c}eskie zametki}, pages = {369--381}, publisher = {mathdoc}, volume = {67}, number = {3}, year = {2000}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2000_67_3_a5/} }
TY - JOUR AU - I. M. Nabiev TI - Multiplicities and relative position of eigenvalues of a~quadratic pencil of Sturm--Liouville operators JO - Matematičeskie zametki PY - 2000 SP - 369 EP - 381 VL - 67 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2000_67_3_a5/ LA - ru ID - MZM_2000_67_3_a5 ER -
I. M. Nabiev. Multiplicities and relative position of eigenvalues of a~quadratic pencil of Sturm--Liouville operators. Matematičeskie zametki, Tome 67 (2000) no. 3, pp. 369-381. http://geodesic.mathdoc.fr/item/MZM_2000_67_3_a5/
[1] Marchenko V. A., Operatory Shturma–Liuvillya i ikh prilozheniya, Naukova dumka, Kiev, 1977
[2] Guseinov G. Sh., “K spektralnomu analizu kvadratichnogo puchka operatorov Shturma–Liuvillya”, Dokl. AN SSSR, 285:6 (1985), 1292–1296 | MR | Zbl
[3] Gasymov M. G., Guseinov G. Sh., “Opredelenie operatora diffuzii po spektralnym dannym”, Dokl. AN Azerb. SSR, 37:2 (1981), 19–23 | MR | Zbl
[4] Koddington E. A., Levinson N., Teoriya obyknovennykh differentsialnykh uravnenii, IL, M., 1958
[5] Levitan B. M., Sargsyan I. S., Operatory Shturma–Liuvillya i Diraka, Nauka, M., 1988 | Zbl
[6] Guseinov G. Sh., “Spektr i razlozheniya po sobstvennym funktsiyam kvadratichnogo puchka operatorov Shturma–Liuvillya s periodicheskimi koeffitsientami”, Spektralnaya teoriya operatorov i ee prilozheniya, no. 6, Baku, 1985, 56–97 | MR
[7] Plaksina O. A., “Kharakteristika spektra nekotorykh kraevykh zadach dlya operatora Shturma–Liuvillya”, UMN, 36:2 (1981), 199–200 | MR | Zbl
[8] Plaksina O. A., “Obratnye zadachi spektralnogo analiza dlya operatora Shturma–Liuvillya s nerazdelennymi granichnymi usloviyami”, Matem. sb., 131 (173):1 (1986), 3–26 | MR | Zbl
[9] Guseinov I. M., Nabiev I. M., “Ob odnom klasse obratnykh kraevykh zadach dlya operatorov Shturma–Liuvillya”, Differents. uravneniya, 25:7 (1989), 1114–1120 | MR | Zbl
[10] Guseinov I. M., Nabiev I. M., “Obratnaya zadacha dlya operatora Shturma–Liuvillya s nerazdelennymi kraevymi usloviyami”, Izv. AN Azerb. SSR. Ser. fiz.-tekhn. i matem. nauk, 8:2 (1987), 22–29 | MR
[11] Gasymov M. G., Guseinov I. M., Nabiev I. M., “Obratnaya zadacha dlya operatora Shturma–Liuvillya s nerazdelennymi samosopryazhennymi granichnymi usloviyami”, Sib. matem. zh., 31:6 (1990), 46–54 | MR | Zbl
[12] Guseinov I. M., Nabiev I. M., “Reshenie odnogo klassa obratnykh kraevykh zadach Shturma–Liuvillya”, Matem. sb., 186:5 (1995), 35–48 | MR | Zbl