An analogue of the Baum--Katz theorem for weakly dependent random variables
Matematičeskie zametki, Tome 67 (2000) no. 3, pp. 360-368.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_2000_67_3_a4,
     author = {A. E. Mikusheva},
     title = {An analogue of the {Baum--Katz} theorem for weakly dependent random variables},
     journal = {Matemati\v{c}eskie zametki},
     pages = {360--368},
     publisher = {mathdoc},
     volume = {67},
     number = {3},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2000_67_3_a4/}
}
TY  - JOUR
AU  - A. E. Mikusheva
TI  - An analogue of the Baum--Katz theorem for weakly dependent random variables
JO  - Matematičeskie zametki
PY  - 2000
SP  - 360
EP  - 368
VL  - 67
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2000_67_3_a4/
LA  - ru
ID  - MZM_2000_67_3_a4
ER  - 
%0 Journal Article
%A A. E. Mikusheva
%T An analogue of the Baum--Katz theorem for weakly dependent random variables
%J Matematičeskie zametki
%D 2000
%P 360-368
%V 67
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2000_67_3_a4/
%G ru
%F MZM_2000_67_3_a4
A. E. Mikusheva. An analogue of the Baum--Katz theorem for weakly dependent random variables. Matematičeskie zametki, Tome 67 (2000) no. 3, pp. 360-368. http://geodesic.mathdoc.fr/item/MZM_2000_67_3_a4/

[1] Marcinkiewicz J., Zygmund A., “Sur les fonctions independantes”, Fund. Math., 29 (1937), 60–90 | Zbl

[2] Rio E., “A maximal inequality and dependent Marcinkiewicz–Zygmund strong law”, Ann. Probab., 23:2 (1995), 918–937 | DOI | MR | Zbl

[3] Ibragimov I. A., Linnik Yu. V., Nezavisimye i statsionarno svyazannye velichiny, Nauka, M., 1965

[4] Baum L. E., Katz M., “Convergence rate in the law of large numbers”, Trans. Amer. Math. Soc., 120 (1965), 108–123 | DOI | MR | Zbl

[5] Doukhan P., Massart P., Rio E., “The functional central limit theorem for strongly mixing processes”, Ann. Inst. Henri Poincaré, 30 (1994), 63–82 | MR | Zbl

[6] Hsu P. L., Robbins H., “Complete convergence and the law of large numbers”, Proc. Nat. Acad. Sci. USA, 33 (1947), 25–31 | DOI | MR | Zbl