Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2000_67_3_a4, author = {A. E. Mikusheva}, title = {An analogue of the {Baum--Katz} theorem for weakly dependent random variables}, journal = {Matemati\v{c}eskie zametki}, pages = {360--368}, publisher = {mathdoc}, volume = {67}, number = {3}, year = {2000}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2000_67_3_a4/} }
A. E. Mikusheva. An analogue of the Baum--Katz theorem for weakly dependent random variables. Matematičeskie zametki, Tome 67 (2000) no. 3, pp. 360-368. http://geodesic.mathdoc.fr/item/MZM_2000_67_3_a4/
[1] Marcinkiewicz J., Zygmund A., “Sur les fonctions independantes”, Fund. Math., 29 (1937), 60–90 | Zbl
[2] Rio E., “A maximal inequality and dependent Marcinkiewicz–Zygmund strong law”, Ann. Probab., 23:2 (1995), 918–937 | DOI | MR | Zbl
[3] Ibragimov I. A., Linnik Yu. V., Nezavisimye i statsionarno svyazannye velichiny, Nauka, M., 1965
[4] Baum L. E., Katz M., “Convergence rate in the law of large numbers”, Trans. Amer. Math. Soc., 120 (1965), 108–123 | DOI | MR | Zbl
[5] Doukhan P., Massart P., Rio E., “The functional central limit theorem for strongly mixing processes”, Ann. Inst. Henri Poincaré, 30 (1994), 63–82 | MR | Zbl
[6] Hsu P. L., Robbins H., “Complete convergence and the law of large numbers”, Proc. Nat. Acad. Sci. USA, 33 (1947), 25–31 | DOI | MR | Zbl