Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2000_67_3_a3, author = {V. A. Krasnov}, title = {The {Brauer} group of an noncomplete real algebraic surface}, journal = {Matemati\v{c}eskie zametki}, pages = {355--359}, publisher = {mathdoc}, volume = {67}, number = {3}, year = {2000}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2000_67_3_a3/} }
V. A. Krasnov. The Brauer group of an noncomplete real algebraic surface. Matematičeskie zametki, Tome 67 (2000) no. 3, pp. 355-359. http://geodesic.mathdoc.fr/item/MZM_2000_67_3_a3/
[1] Krasnov V. A., “Kogomologicheskaya gruppa Brauera veschestvennogo algebraicheskogo mnogoobraziya”, Izv. RAN. Ser. matem., 60:5 (1996), 57–88 | MR | Zbl
[2] Krasnov V. A., “Analogi neravenstva Garnaka–Toma dlya veschestvennoi algebraicheskoi poverkhnosti”, Izv. RAN. Ser. matem. (to appear)
[3] Grothendick A., “Le groupe de Brauer”, Dix exposés sur la cohomologie des schemas, North-Holland, Amsterdam, 1968, 46–188
[4] Miln Dzh., Etalnye kogomologii, Mir, M., 1983
[5] Nikulin V. V., “On the Brauer group of real algebraic surfaces”, Algebraic Geometry and Its Applications, Yaroslavl', 1992, 114–136
[6] Krasnov V. A., “Kharakteristicheskie klassy vektornykh rassloenii na veschestvennom algebraicheskom mnogoobrazii”, Izv. AN SSSR. Ser. matem., 55:4 (1991), 716–746
[7] Krasnov V. A., “O gruppe Brauera veschestvennoi algebraicheskoi poverkhnosti”, Matem. zametki, 60:6 (1996), 935–938 | MR | Zbl