Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2000_67_3_a2, author = {V. N. Demenko}, title = {Bases in {Sobolev} weight spaces}, journal = {Matemati\v{c}eskie zametki}, pages = {343--354}, publisher = {mathdoc}, volume = {67}, number = {3}, year = {2000}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2000_67_3_a2/} }
V. N. Demenko. Bases in Sobolev weight spaces. Matematičeskie zametki, Tome 67 (2000) no. 3, pp. 343-354. http://geodesic.mathdoc.fr/item/MZM_2000_67_3_a2/
[1] Ciesielski Z., “A construction of basis in $C^{(1)}(I^2)$”, Studia Math., 33:2 (1969), 243–247 | MR | Zbl
[2] Schonefeld S., “Schauder bases in spaces of differentiable functions”, Bull. Amer. Math. Soc., 75 (1969), 589–590 | DOI | MR
[3] Ciesielski Z., Domsta J., “Construction of orthonormal basis in $C^m(I^d)$ and $W_p^m(I^d)$”, Studia Math., 41:2 (1972), 211–224 | MR | Zbl
[4] Carry H. B., Schoenberg I. J., “On Polya frequence function, IV”, J. Anal. Math., 17 (1966), 71–107 | DOI | MR
[5] de Boor C., “Splines as linear combinations of $B$-splines”, Approximation Theory, V. II, Acad. Press, New York, 1976, 1–47
[6] Akopyan A. A., Saakyan A. A., “Mnogomernye splainy i polinomialnaya interpolyatsiya”, UMN, 48:5 (1993), 3–76 | MR | Zbl
[7] de Boor C., “The quasi interpolant as a tool in elementary spline theory”, Approximation Theory, Acad. Press, New York, 1973, 269–276
[8] Akhiezer N. I., Lektsii po teorii approksimatsii, Nauka, M., 1965
[9] Olevskiï A. M., Fourier Series with respect to General Orthogonal Systems, Springer, Berlin, 1975 | Zbl