Bases in Sobolev weight spaces
Matematičeskie zametki, Tome 67 (2000) no. 3, pp. 343-354.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_2000_67_3_a2,
     author = {V. N. Demenko},
     title = {Bases in {Sobolev} weight spaces},
     journal = {Matemati\v{c}eskie zametki},
     pages = {343--354},
     publisher = {mathdoc},
     volume = {67},
     number = {3},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2000_67_3_a2/}
}
TY  - JOUR
AU  - V. N. Demenko
TI  - Bases in Sobolev weight spaces
JO  - Matematičeskie zametki
PY  - 2000
SP  - 343
EP  - 354
VL  - 67
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2000_67_3_a2/
LA  - ru
ID  - MZM_2000_67_3_a2
ER  - 
%0 Journal Article
%A V. N. Demenko
%T Bases in Sobolev weight spaces
%J Matematičeskie zametki
%D 2000
%P 343-354
%V 67
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2000_67_3_a2/
%G ru
%F MZM_2000_67_3_a2
V. N. Demenko. Bases in Sobolev weight spaces. Matematičeskie zametki, Tome 67 (2000) no. 3, pp. 343-354. http://geodesic.mathdoc.fr/item/MZM_2000_67_3_a2/

[1] Ciesielski Z., “A construction of basis in $C^{(1)}(I^2)$”, Studia Math., 33:2 (1969), 243–247 | MR | Zbl

[2] Schonefeld S., “Schauder bases in spaces of differentiable functions”, Bull. Amer. Math. Soc., 75 (1969), 589–590 | DOI | MR

[3] Ciesielski Z., Domsta J., “Construction of orthonormal basis in $C^m(I^d)$ and $W_p^m(I^d)$”, Studia Math., 41:2 (1972), 211–224 | MR | Zbl

[4] Carry H. B., Schoenberg I. J., “On Polya frequence function, IV”, J. Anal. Math., 17 (1966), 71–107 | DOI | MR

[5] de Boor C., “Splines as linear combinations of $B$-splines”, Approximation Theory, V. II, Acad. Press, New York, 1976, 1–47

[6] Akopyan A. A., Saakyan A. A., “Mnogomernye splainy i polinomialnaya interpolyatsiya”, UMN, 48:5 (1993), 3–76 | MR | Zbl

[7] de Boor C., “The quasi interpolant as a tool in elementary spline theory”, Approximation Theory, Acad. Press, New York, 1973, 269–276

[8] Akhiezer N. I., Lektsii po teorii approksimatsii, Nauka, M., 1965

[9] Olevskiï A. M., Fourier Series with respect to General Orthogonal Systems, Springer, Berlin, 1975 | Zbl