Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2000_67_3_a12, author = {E. N. Shananina}, title = {Models of {CR-manifolds} of type $(\ell,K)$ for $3\leqslant K\leqslant 7$ and their automorphisms}, journal = {Matemati\v{c}eskie zametki}, pages = {452--459}, publisher = {mathdoc}, volume = {67}, number = {3}, year = {2000}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2000_67_3_a12/} }
TY - JOUR AU - E. N. Shananina TI - Models of CR-manifolds of type $(\ell,K)$ for $3\leqslant K\leqslant 7$ and their automorphisms JO - Matematičeskie zametki PY - 2000 SP - 452 EP - 459 VL - 67 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2000_67_3_a12/ LA - ru ID - MZM_2000_67_3_a12 ER -
E. N. Shananina. Models of CR-manifolds of type $(\ell,K)$ for $3\leqslant K\leqslant 7$ and their automorphisms. Matematičeskie zametki, Tome 67 (2000) no. 3, pp. 452-459. http://geodesic.mathdoc.fr/item/MZM_2000_67_3_a12/
[1] Beloshapka V. K., “O golomorfnykh preobrazovaniyakh kvadriki”, Matem. sb., 182:2 (1991), 203–219 | Zbl
[2] Tumanov A. E., “Konechnomernost gruppy $\operatorname {CR}$-avtomorfizmov standartnogo $\operatorname {CR}$-mnogoobraziya i sobstvennye golomorfnye otobrazheniya oblastei Zigelya”, Izv. AN SSSR. Ser. matem., 52:3 (1988), 651–659 | MR | Zbl
[3] Beloshapka V. K., “$\operatorname {CR}$-mnogoobraziya tipa $(1,2)$ kak mnogoobraziya “sverkhvysokoi” korazmernosti”, Russian J. Math. Phys., 5:2 (1997), 399–404 | MR | Zbl
[4] Beloshapka V. K., “Konechnomernost gruppy avtomorfizmov veschestvenno analiticheskoi poverkhnosti”, Izv. AN SSSR. Ser. matem., 52:2 (1988), 437–442 | MR | Zbl
[5] Palamodov V. P., Lineinye differentsialnye operatory s postoyannymi koeffitsientami, Nauka, M., 1967