Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2000_67_3_a1, author = {V. L. Vereshchagin}, title = {The asymptotic behavior of solutions of the {sine-Gordon} equation with singularities zero}, journal = {Matemati\v{c}eskie zametki}, pages = {329--342}, publisher = {mathdoc}, volume = {67}, number = {3}, year = {2000}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2000_67_3_a1/} }
TY - JOUR AU - V. L. Vereshchagin TI - The asymptotic behavior of solutions of the sine-Gordon equation with singularities zero JO - Matematičeskie zametki PY - 2000 SP - 329 EP - 342 VL - 67 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2000_67_3_a1/ LA - ru ID - MZM_2000_67_3_a1 ER -
V. L. Vereshchagin. The asymptotic behavior of solutions of the sine-Gordon equation with singularities zero. Matematičeskie zametki, Tome 67 (2000) no. 3, pp. 329-342. http://geodesic.mathdoc.fr/item/MZM_2000_67_3_a1/
[1] Novokshenov V. Yu., Shagalov A. G., “Resheniya tipa svyazannykh sostoyanii dlya ellipticheskogo uravneniya sinus-Gordon”, TMF, 111:1 (1997), 15–31 | MR | Zbl
[2] Novokshenov V. Yu., “Ob asimptotike obschego veschestvennogo resheniya tretego uravneniya Penleve”, Dokl. AN SSSR, 283:5 (1985), 1161–1165 | MR | Zbl
[3] Novokshenov V. Yu., Radial-symmetric solution of the cosh-Laplace equation and the distribution of its singularities, Preprint No. 64, SFB 288, Berlin, 1993
[4] Vereschagin V. L., Nonlinear quasiclassics and the Painlevé equations, , 1997 http://arxiv.org/abs/solv-int/9707004
[5] Its A. R., ““Izomonodromnye” resheniya uravnenii nulevoi krivizny”, Izv. AN SSSR. Ser. matem., 49:3 (1985), 32–63 | MR
[6] Fedoryuk M. V., Asimptoticheskie metody dlya lineinykh obyknovennykh differentsialnykh uravnenii, Nauka, M., 1983 | Zbl
[7] Jimbo M., Miwa T., “Monodromy preserving deformation of linear ordinary differential equations with rational coefficients, II”, Phys. D, 2:3 (1981), 407–448 | DOI | MR
[8] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, T. 3, Nauka, M., 1967
[9] Flaschka H., Newell A. C., “Monodromy and spectrum preserving deformations, I”, Comm. Math. Phys., 76 (1980), 67–116 | DOI | MR