Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2000_67_2_a9, author = {A. E. Ruuge}, title = {The structure of semiclassical asymptotic expansions of antisymmetric solutions of the stationary {Schr\"odinger} equation}, journal = {Matemati\v{c}eskie zametki}, pages = {257--269}, publisher = {mathdoc}, volume = {67}, number = {2}, year = {2000}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2000_67_2_a9/} }
TY - JOUR AU - A. E. Ruuge TI - The structure of semiclassical asymptotic expansions of antisymmetric solutions of the stationary Schr\"odinger equation JO - Matematičeskie zametki PY - 2000 SP - 257 EP - 269 VL - 67 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2000_67_2_a9/ LA - ru ID - MZM_2000_67_2_a9 ER -
%0 Journal Article %A A. E. Ruuge %T The structure of semiclassical asymptotic expansions of antisymmetric solutions of the stationary Schr\"odinger equation %J Matematičeskie zametki %D 2000 %P 257-269 %V 67 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2000_67_2_a9/ %G ru %F MZM_2000_67_2_a9
A. E. Ruuge. The structure of semiclassical asymptotic expansions of antisymmetric solutions of the stationary Schr\"odinger equation. Matematičeskie zametki, Tome 67 (2000) no. 2, pp. 257-269. http://geodesic.mathdoc.fr/item/MZM_2000_67_2_a9/
[1] Maslov V. P., “Ob odnom novom variatsionnom printsipe dlya fermionov”, Matem. zametki, 62:4 (1997), 633–634 | MR | Zbl
[2] Maslov V. P., Operatornye metody, Nauka, M., 1973
[3] Maslov V. P., Kompleksnyi VKB metod v nelineinykh uravneniyakh, Nauka, M., 1977
[4] Landau L. D., Lifshits E. M., Kvantovaya mekhanika, Fizmatlit, M., 1963
[5] Ruuge A. E., O strukture osnovnogo antisimmetricheskogo sostoyaniya kvaziklassicheskoi serii operatora Shredingera, Preprint fizicheskogo f-ta MGU, No 4/1999, MGU, M., 1999
[6] Ruuge A. E., “Variatsionnyi printsip dlya kvaziklassicheskikh fermionov”, Matem. zametki (to appear)