@article{MZM_2000_67_2_a5,
author = {L. A. Masal'tsev},
title = {Joachimsthal surfaces in~$S^3$},
journal = {Matemati\v{c}eskie zametki},
pages = {221--229},
year = {2000},
volume = {67},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2000_67_2_a5/}
}
L. A. Masal'tsev. Joachimsthal surfaces in $S^3$. Matematičeskie zametki, Tome 67 (2000) no. 2, pp. 221-229. http://geodesic.mathdoc.fr/item/MZM_2000_67_2_a5/
[1] Bianchi L., Lezioni di geometria differenziale, V. 1, Edit. Nic. Zanichelli, Bologna, 1927
[2] Shulikovskii V. I., Klassicheskaya differentsialnaya geometriya, Gos. izdat. fiz.-mat. lit., M., 1963
[3] Wente H. C., “Counterexample to a conjecture of H. Hopf”, Pacific J. Math., 121:1 (1986), 193–243 | MR | Zbl
[4] Abresh U., “Constant mean curvature tori in terms of elliptic functions”, J. Reine Angew. Math., 374 (1987), 169–172 | MR
[5] Walter R., “Explicit examples to the H-problem of Heinz Hopf”, Geom. Dedicata, 23 (1987), 187–213 | DOI | MR
[6] Bobenko A. I., “All constant mean curvature tori in $\mathbb R^3$, $S^3$, $H^3$ in terms of theta-functions”, Math. Ann., 290 (1991), 209–245 | DOI | MR | Zbl
[7] Bobenko A. I., “Poverkhnosti postoyannoi srednei krivizny i integriruemye uravneniya”, UMN, 46:4 (1991), 3–42 | MR
[8] Wente H. C., Constant mean curvature immersions of Enneper type, Memoirs Amer. Math. Soc., 478, 1992 | MR | Zbl
[9] Wente H. C., “Complete immersions of constant mean curvature”, Proc. Symp. Pure Math., 54:1 (1993), 497–512 | MR | Zbl