Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2000_67_2_a4, author = {V. A. Krasnov}, title = {On the {Picard} group and the {Brauer} group of a~real algebraic surface}, journal = {Matemati\v{c}eskie zametki}, pages = {211--220}, publisher = {mathdoc}, volume = {67}, number = {2}, year = {2000}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2000_67_2_a4/} }
V. A. Krasnov. On the Picard group and the Brauer group of a~real algebraic surface. Matematičeskie zametki, Tome 67 (2000) no. 2, pp. 211-220. http://geodesic.mathdoc.fr/item/MZM_2000_67_2_a4/
[1] Manin Y. I., “Le groupe de Brauer–Grothendick en géométrie diophantienne”, Actes du Congres Intern. Math., V. 1 (Nice), Gauthier-Villars, Paris, 1970, 401–411
[2] Krasnov V. A., “Neravenstva Garnaka–Toma dlya otobrazhenii veschestvennykh algebraicheskikh mnogoobrazii”, Izv. AN SSSR. Ser. matem., 47:2 (1983), 268–297 | MR
[3] Mili Dzh., Etalnye kogomologii, Mir, M., 1983
[4] Krasnov V. A., “Kogomologicheskaya gruppa Brauera veschestvennogo algebraicheskogo mnogoobraziya”, Izv. RAN. Ser. matem., 60:5 (1996), 57–88 | MR | Zbl
[5] Grothendick A., “Le groupe de Brauer”, Dix exposés sur la cohomolgie des schemas, North-Holland, Amsterdam, 1968, 46–188
[6] Krasnov V. A., “Ekvivariantnye kogomologii veschestvennoi algebraicheskoi poverkhnosti i ikh prilozheniya”, Izv. RAN. Ser. matem., 60:6 (1996), 101–126 | MR | Zbl
[7] Rokhlin V. A., “Sravneniya po $\operatorname {mod}16$ v shestnadtsatoi probleme Gilberta”, Funktsion. analiz i ego prilozh., 6:4 (1972), 71–75 ; 7:2 (1973), 91–92 | MR | Zbl
[8] Krasnov V. A., “Kharakteristicheskie klassy vektornykh rassloenii na veschestvennom algebraicheskom mnogoobrazii”, Izv. AN SSSR. Ser. matem., 55:4 (1991), 716–746