Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2000_67_2_a11, author = {N. V. Timofeeva}, title = {Smoothness and {Euler} characteristic of the variety of complete pairs $X_{23}$ of zero-dimensional subschemes of length~2 and~3 of algebraic surfaces}, journal = {Matemati\v{c}eskie zametki}, pages = {276--287}, publisher = {mathdoc}, volume = {67}, number = {2}, year = {2000}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2000_67_2_a11/} }
TY - JOUR AU - N. V. Timofeeva TI - Smoothness and Euler characteristic of the variety of complete pairs $X_{23}$ of zero-dimensional subschemes of length~2 and~3 of algebraic surfaces JO - Matematičeskie zametki PY - 2000 SP - 276 EP - 287 VL - 67 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2000_67_2_a11/ LA - ru ID - MZM_2000_67_2_a11 ER -
%0 Journal Article %A N. V. Timofeeva %T Smoothness and Euler characteristic of the variety of complete pairs $X_{23}$ of zero-dimensional subschemes of length~2 and~3 of algebraic surfaces %J Matematičeskie zametki %D 2000 %P 276-287 %V 67 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2000_67_2_a11/ %G ru %F MZM_2000_67_2_a11
N. V. Timofeeva. Smoothness and Euler characteristic of the variety of complete pairs $X_{23}$ of zero-dimensional subschemes of length~2 and~3 of algebraic surfaces. Matematičeskie zametki, Tome 67 (2000) no. 2, pp. 276-287. http://geodesic.mathdoc.fr/item/MZM_2000_67_2_a11/
[1] Tikhomirov A. S., “Mnogoobrazie polnykh par nulmernykh podskhem algebraicheskoi poverkhnosti”, Izv. RAN. Ser. matem., 61:6 (1997), 153–180 | MR | Zbl
[2] Chean J., The Cohomology of Smooth Nested Hilbert Schemes of Points, Thesis, Univ. of Chicago, 1994
[3] Briançon J., “Description de $\operatorname {Hilb}^n\mathbb C\{x,y\}$”, Invent. Math., 41 (1977), 45–89 | DOI | MR | Zbl
[4] Bialyncki-Birula A., “Some theorems on actions of algebraic groups”, Ann. of Math., 98 (1973), 480–497 | DOI | MR
[5] Fulton U., Teoriya peresechenii, Mir, M., 1989