Smoothness and Euler characteristic of the variety of complete pairs $X_{23}$ of zero-dimensional subschemes of length~2 and~3 of algebraic surfaces
Matematičeskie zametki, Tome 67 (2000) no. 2, pp. 276-287.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_2000_67_2_a11,
     author = {N. V. Timofeeva},
     title = {Smoothness and {Euler} characteristic of the variety of complete pairs $X_{23}$ of zero-dimensional subschemes of length~2 and~3 of algebraic surfaces},
     journal = {Matemati\v{c}eskie zametki},
     pages = {276--287},
     publisher = {mathdoc},
     volume = {67},
     number = {2},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2000_67_2_a11/}
}
TY  - JOUR
AU  - N. V. Timofeeva
TI  - Smoothness and Euler characteristic of the variety of complete pairs $X_{23}$ of zero-dimensional subschemes of length~2 and~3 of algebraic surfaces
JO  - Matematičeskie zametki
PY  - 2000
SP  - 276
EP  - 287
VL  - 67
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2000_67_2_a11/
LA  - ru
ID  - MZM_2000_67_2_a11
ER  - 
%0 Journal Article
%A N. V. Timofeeva
%T Smoothness and Euler characteristic of the variety of complete pairs $X_{23}$ of zero-dimensional subschemes of length~2 and~3 of algebraic surfaces
%J Matematičeskie zametki
%D 2000
%P 276-287
%V 67
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2000_67_2_a11/
%G ru
%F MZM_2000_67_2_a11
N. V. Timofeeva. Smoothness and Euler characteristic of the variety of complete pairs $X_{23}$ of zero-dimensional subschemes of length~2 and~3 of algebraic surfaces. Matematičeskie zametki, Tome 67 (2000) no. 2, pp. 276-287. http://geodesic.mathdoc.fr/item/MZM_2000_67_2_a11/

[1] Tikhomirov A. S., “Mnogoobrazie polnykh par nulmernykh podskhem algebraicheskoi poverkhnosti”, Izv. RAN. Ser. matem., 61:6 (1997), 153–180 | MR | Zbl

[2] Chean J., The Cohomology of Smooth Nested Hilbert Schemes of Points, Thesis, Univ. of Chicago, 1994

[3] Briançon J., “Description de $\operatorname {Hilb}^n\mathbb C\{x,y\}$”, Invent. Math., 41 (1977), 45–89 | DOI | MR | Zbl

[4] Bialyncki-Birula A., “Some theorems on actions of algebraic groups”, Ann. of Math., 98 (1973), 480–497 | DOI | MR

[5] Fulton U., Teoriya peresechenii, Mir, M., 1989