Smoothness and Euler characteristic of the variety of complete pairs $X_{23}$ of zero-dimensional subschemes of length 2 and 3 of algebraic surfaces
Matematičeskie zametki, Tome 67 (2000) no. 2, pp. 276-287
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{MZM_2000_67_2_a11,
author = {N. V. Timofeeva},
title = {Smoothness and {Euler} characteristic of the variety of complete pairs $X_{23}$ of zero-dimensional subschemes of length~2 and~3 of algebraic surfaces},
journal = {Matemati\v{c}eskie zametki},
pages = {276--287},
year = {2000},
volume = {67},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2000_67_2_a11/}
}
TY - JOUR
AU - N. V. Timofeeva
TI - Smoothness and Euler characteristic of the variety of complete pairs $X_{23}$ of zero-dimensional subschemes of length 2 and 3 of algebraic surfaces
JO - Matematičeskie zametki
PY - 2000
SP - 276
EP - 287
VL - 67
IS - 2
UR - http://geodesic.mathdoc.fr/item/MZM_2000_67_2_a11/
LA - ru
ID - MZM_2000_67_2_a11
ER -
%0 Journal Article
%A N. V. Timofeeva
%T Smoothness and Euler characteristic of the variety of complete pairs $X_{23}$ of zero-dimensional subschemes of length 2 and 3 of algebraic surfaces
%J Matematičeskie zametki
%D 2000
%P 276-287
%V 67
%N 2
%U http://geodesic.mathdoc.fr/item/MZM_2000_67_2_a11/
%G ru
%F MZM_2000_67_2_a11
N. V. Timofeeva. Smoothness and Euler characteristic of the variety of complete pairs $X_{23}$ of zero-dimensional subschemes of length 2 and 3 of algebraic surfaces. Matematičeskie zametki, Tome 67 (2000) no. 2, pp. 276-287. http://geodesic.mathdoc.fr/item/MZM_2000_67_2_a11/
[1] Tikhomirov A. S., “Mnogoobrazie polnykh par nulmernykh podskhem algebraicheskoi poverkhnosti”, Izv. RAN. Ser. matem., 61:6 (1997), 153–180 | MR | Zbl
[2] Chean J., The Cohomology of Smooth Nested Hilbert Schemes of Points, Thesis, Univ. of Chicago, 1994
[3] Briançon J., “Description de $\operatorname {Hilb}^n\mathbb C\{x,y\}$”, Invent. Math., 41 (1977), 45–89 | DOI | MR | Zbl
[4] Bialyncki-Birula A., “Some theorems on actions of algebraic groups”, Ann. of Math., 98 (1973), 480–497 | DOI | MR
[5] Fulton U., Teoriya peresechenii, Mir, M., 1989