Algebraic independence of the values of $E$-functions at singular points and Siegel's conjecture
Matematičeskie zametki, Tome 67 (2000) no. 2, pp. 174-190.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_2000_67_2_a1,
     author = {V. A. Gorelov},
     title = {Algebraic independence of the values of $E$-functions at singular points and {Siegel's} conjecture},
     journal = {Matemati\v{c}eskie zametki},
     pages = {174--190},
     publisher = {mathdoc},
     volume = {67},
     number = {2},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2000_67_2_a1/}
}
TY  - JOUR
AU  - V. A. Gorelov
TI  - Algebraic independence of the values of $E$-functions at singular points and Siegel's conjecture
JO  - Matematičeskie zametki
PY  - 2000
SP  - 174
EP  - 190
VL  - 67
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2000_67_2_a1/
LA  - ru
ID  - MZM_2000_67_2_a1
ER  - 
%0 Journal Article
%A V. A. Gorelov
%T Algebraic independence of the values of $E$-functions at singular points and Siegel's conjecture
%J Matematičeskie zametki
%D 2000
%P 174-190
%V 67
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2000_67_2_a1/
%G ru
%F MZM_2000_67_2_a1
V. A. Gorelov. Algebraic independence of the values of $E$-functions at singular points and Siegel's conjecture. Matematičeskie zametki, Tome 67 (2000) no. 2, pp. 174-190. http://geodesic.mathdoc.fr/item/MZM_2000_67_2_a1/

[1] Siegel C. L., “Über einige Anwendungen Diophantischer Approximationen”, Abh. Preuss. Akad. Wiss., Phys.-Math. Kl., 1929–1930, no. 1, 1–70

[2] Shidlovskii A. B., Transtsendentnye chisla, Nauka, M, 1987

[3] Siegel C. L., Transcendental Numbers, Princeton Univ. Press, Princeton, 1949

[4] Galochkin A. I., “O kriterii prinadlezhnosti gipergeometricheskikh funktsii Zigelya klassu $E$-funktsii”, Matem. zametki, 29:1 (1981), 3–14 | MR | Zbl