@article{MZM_2000_67_1_a8,
author = {S. N. Kudryavtsev},
title = {The {Stechkin} problem for partial derivation operators on classes of finitely smooth functions},
journal = {Matemati\v{c}eskie zametki},
pages = {77--86},
year = {2000},
volume = {67},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2000_67_1_a8/}
}
S. N. Kudryavtsev. The Stechkin problem for partial derivation operators on classes of finitely smooth functions. Matematičeskie zametki, Tome 67 (2000) no. 1, pp. 77-86. http://geodesic.mathdoc.fr/item/MZM_2000_67_1_a8/
[1] Stechkin S. B., “Nailuchshee priblizhenie lineinykh operatorov”, Matem. zametki, 1:2 (1967), 137–148 | MR | Zbl
[2] Arestov V. V., “Priblizhenie neogranichennykh operatorov ogranichennymi i rodstvennye ekstremalnye zadachi”, UMN, 51:6 (1996), 89–124 | MR | Zbl
[3] Timoshin O. A., “O nailuchshem priblizhenii differentsiruemykh operatorov s chastnymi proizvodnymi”, Matem. zametki, 46:1 (1989), 78–87 | MR | Zbl
[4] Timoshin O. A., “Poryadki nailuchshego priblizheniya differentsiruemykh operatorov s chastnymi proizvodnymi”, Matem. zametki, 48:4 (1990), 115–121 | MR | Zbl
[5] Kudryavtsev S. N., “Nekotorye zadachi teorii priblizhenii dlya odnogo klassa funktsii konechnoi gladkosti”, Matem. sb., 183:2 (1992), 3–20
[6] Kudryavtsev S. N., “Priblizhenie operatora chastnogo differentsirovaniya ogranichennymi operatorami na klasse funktsii konechnoi gladkosti”, Matem. sb., 187:3 (1996), 75–92 | MR | Zbl
[7] Kudryavtsev S. N., “Nailuchshaya tochnost vosstanovleniya funktsii konechnoi gladkosti po ikh znacheniyam v zadannom chisle tochek”, Izv. RAN. Ser. matem., 62:1 (1998), 21–58 | MR | Zbl