Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2000_67_1_a5, author = {I. \'E. Zverovich}, title = {A characterization of well-covered graphs in terms of forbidden costable subgraphs}, journal = {Matemati\v{c}eskie zametki}, pages = {52--56}, publisher = {mathdoc}, volume = {67}, number = {1}, year = {2000}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2000_67_1_a5/} }
I. É. Zverovich. A characterization of well-covered graphs in terms of forbidden costable subgraphs. Matematičeskie zametki, Tome 67 (2000) no. 1, pp. 52-56. http://geodesic.mathdoc.fr/item/MZM_2000_67_1_a5/
[1] Kharari F., Teoriya grafov, Mir, M., 1969
[2] Chvátal V., Slater P., “A note on well-covered graphs”, Quo Vadis Graph Theory?, Annals Discrete Math., 55, eds. J. Gimbel et al., North-Holland, Amsterdam, 1993, 179–182 | MR
[3] Sankaranarayana R. S., Stewart L. K., “Complexity results for well-covered graphs”, Networks, 22 (1992), 247–262 | DOI | MR | Zbl
[4] Plummer M. D., “Well-covered graphs: a survey”, Questiones Math., 16 (1993), 253–287 | MR | Zbl
[5] Finbow A., Hartnell B., Nowakowski R. J., “A characterization of well-covered graphs of girth 5 or greater”, J. Combin. Theory Ser. B, 57 (1993), 44–68 | DOI | MR | Zbl
[6] Finbow A., Hartnell B., Nowakowski R. J., “A characterization of well-covered graphs which contain neither $4$- nor $5$-cycles”, J. Graph Theory, 18 (1994), 713–721 | DOI | MR | Zbl
[7] Whitehead C. A., “A characterization of well-covered claw-free graphs containing no $4$-cycle”, Ars Combin. (to appear)
[8] Hartnell B., Plummer M. D., “On 4-connected claw-free well-covered graphs”, Discrete Appl. Math., 64 (1996), 57–65 | DOI | MR | Zbl