A characterization of well-covered graphs in terms of forbidden costable subgraphs
Matematičeskie zametki, Tome 67 (2000) no. 1, pp. 52-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_2000_67_1_a5,
     author = {I. \'E. Zverovich},
     title = {A characterization of well-covered graphs in terms of forbidden costable subgraphs},
     journal = {Matemati\v{c}eskie zametki},
     pages = {52--56},
     publisher = {mathdoc},
     volume = {67},
     number = {1},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2000_67_1_a5/}
}
TY  - JOUR
AU  - I. É. Zverovich
TI  - A characterization of well-covered graphs in terms of forbidden costable subgraphs
JO  - Matematičeskie zametki
PY  - 2000
SP  - 52
EP  - 56
VL  - 67
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2000_67_1_a5/
LA  - ru
ID  - MZM_2000_67_1_a5
ER  - 
%0 Journal Article
%A I. É. Zverovich
%T A characterization of well-covered graphs in terms of forbidden costable subgraphs
%J Matematičeskie zametki
%D 2000
%P 52-56
%V 67
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2000_67_1_a5/
%G ru
%F MZM_2000_67_1_a5
I. É. Zverovich. A characterization of well-covered graphs in terms of forbidden costable subgraphs. Matematičeskie zametki, Tome 67 (2000) no. 1, pp. 52-56. http://geodesic.mathdoc.fr/item/MZM_2000_67_1_a5/

[1] Kharari F., Teoriya grafov, Mir, M., 1969

[2] Chvátal V., Slater P., “A note on well-covered graphs”, Quo Vadis Graph Theory?, Annals Discrete Math., 55, eds. J. Gimbel et al., North-Holland, Amsterdam, 1993, 179–182 | MR

[3] Sankaranarayana R. S., Stewart L. K., “Complexity results for well-covered graphs”, Networks, 22 (1992), 247–262 | DOI | MR | Zbl

[4] Plummer M. D., “Well-covered graphs: a survey”, Questiones Math., 16 (1993), 253–287 | MR | Zbl

[5] Finbow A., Hartnell B., Nowakowski R. J., “A characterization of well-covered graphs of girth 5 or greater”, J. Combin. Theory Ser. B, 57 (1993), 44–68 | DOI | MR | Zbl

[6] Finbow A., Hartnell B., Nowakowski R. J., “A characterization of well-covered graphs which contain neither $4$- nor $5$-cycles”, J. Graph Theory, 18 (1994), 713–721 | DOI | MR | Zbl

[7] Whitehead C. A., “A characterization of well-covered claw-free graphs containing no $4$-cycle”, Ars Combin. (to appear)

[8] Hartnell B., Plummer M. D., “On 4-connected claw-free well-covered graphs”, Discrete Appl. Math., 64 (1996), 57–65 | DOI | MR | Zbl