On the order of growth of generalized eigenfunctions of the Sturm--Liouville operator. The Shnol' theorem
Matematičeskie zametki, Tome 67 (2000) no. 1, pp. 46-51.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_2000_67_1_a4,
     author = {S. A. Denisov},
     title = {On the order of growth of generalized eigenfunctions of the {Sturm--Liouville} operator. {The} {Shnol'} theorem},
     journal = {Matemati\v{c}eskie zametki},
     pages = {46--51},
     publisher = {mathdoc},
     volume = {67},
     number = {1},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2000_67_1_a4/}
}
TY  - JOUR
AU  - S. A. Denisov
TI  - On the order of growth of generalized eigenfunctions of the Sturm--Liouville operator. The Shnol' theorem
JO  - Matematičeskie zametki
PY  - 2000
SP  - 46
EP  - 51
VL  - 67
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2000_67_1_a4/
LA  - ru
ID  - MZM_2000_67_1_a4
ER  - 
%0 Journal Article
%A S. A. Denisov
%T On the order of growth of generalized eigenfunctions of the Sturm--Liouville operator. The Shnol' theorem
%J Matematičeskie zametki
%D 2000
%P 46-51
%V 67
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2000_67_1_a4/
%G ru
%F MZM_2000_67_1_a4
S. A. Denisov. On the order of growth of generalized eigenfunctions of the Sturm--Liouville operator. The Shnol' theorem. Matematičeskie zametki, Tome 67 (2000) no. 1, pp. 46-51. http://geodesic.mathdoc.fr/item/MZM_2000_67_1_a4/

[1] Shnol I. E., “O povedenii sobstvennykh funktsii”, Dokl. AN SSSR, 94:2 (1954), 389–392 | MR | Zbl

[2] Berezanskii Yu. M., Razlozhenie po sobstvennym funktsiyam samosopryazhennykh operatorov, Naukova dumka, Kiev, 1965

[3] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, T. 4, Mir, M., 1982

[4] Maslov V. P., Molchanov S. A., Gordon A. Y., “Behaviour of generalized eigenfunctions at infinity and the Schrödinger Conjecture”, Russian J. Math. Phys., 1:1 (1993), 71–104 | MR | Zbl

[5] Glazman I. M., Pryamye metody kachestvennogo spektralnogo analiza singulyarnykh differentsialnykh operatorov, Fizmatgiz, M., 1963

[6] Ilin V. A., Kritskov L. V., “Ravnomernaya na vsei pryamoi otsenka obobschennykh sobstvennykh funktsii odnomernogo operatora Shredingera s ravnomerno lokalno summiruemym potentsialom”, Differents. uravneniya, 31:8 (1995), 1323–1329 | MR | Zbl

[7] Deift P., Killip R., “On the absolutely continuous spectrum of one-dimensional Schrödinger operators with square summable potential”, Comm. Math. Phys. (to appear) | Zbl

[8] Christ M., Kiselev A., Remling C., “The absolutely continuous spectrum of one-dimensional Schrödinger operators with decaying potentials”, Math. Res. Lett., 4:5 (1997), 719–723 | MR | Zbl

[9] Christ M., Kiselev A., “Absolutely continuous spectrum for one-dimensional Schrödinger operators with slowly decaying potentials: some optimal results”, J. Amer. Math. Soc., 11 (1998), 771–797 | DOI | MR | Zbl

[10] Kiselev A., Last Y., Simon B., “Modified Prüfer and EFGP transforms and the spectral analysis of one-dimensional Schrödinger operators”, Comm. Math. Phys., 194 (1998), 1–45 | DOI | MR | Zbl

[11] Remling C., “The absolutely continuous spectrum of one-dimensional Schrödinger operators with decaying potentials”, Comm. Math. Phys., 193:1 (1998), 151–170 | DOI | MR | Zbl

[12] Simon B., “Schrödinger semigroups”, Bull. Amer. Math. Soc., 7:3 (1982), 447–526 | DOI | MR | Zbl

[13] Tsikon Kh., Freze R., Kirsh V., Saimon B., Operatory Shredingera s prilozheniyami k kvantovoi mekhanike i globalnoi geometrii, Mir, M., 1990