On the Blum--Hanson theorem for quantum quadratic processes
Matematičeskie zametki, Tome 67 (2000) no. 1, pp. 102-109.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_2000_67_1_a10,
     author = {F. M. Mukhamedov},
     title = {On the {Blum--Hanson} theorem for quantum quadratic processes},
     journal = {Matemati\v{c}eskie zametki},
     pages = {102--109},
     publisher = {mathdoc},
     volume = {67},
     number = {1},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2000_67_1_a10/}
}
TY  - JOUR
AU  - F. M. Mukhamedov
TI  - On the Blum--Hanson theorem for quantum quadratic processes
JO  - Matematičeskie zametki
PY  - 2000
SP  - 102
EP  - 109
VL  - 67
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2000_67_1_a10/
LA  - ru
ID  - MZM_2000_67_1_a10
ER  - 
%0 Journal Article
%A F. M. Mukhamedov
%T On the Blum--Hanson theorem for quantum quadratic processes
%J Matematičeskie zametki
%D 2000
%P 102-109
%V 67
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2000_67_1_a10/
%G ru
%F MZM_2000_67_1_a10
F. M. Mukhamedov. On the Blum--Hanson theorem for quantum quadratic processes. Matematičeskie zametki, Tome 67 (2000) no. 1, pp. 102-109. http://geodesic.mathdoc.fr/item/MZM_2000_67_1_a10/

[1] Blum J. R., Hanson D. L., “On the mean ergodic theorem for subsequences”, Bull. Amer. Math. Soc., 66 (1960), 308–311 | DOI | MR | Zbl

[2] Jones L., Kuftinec V., “A note on the Blum–Hanson theorem”, Proc. Amer. Math. Soc., 30:1 (1971), 202–203 | DOI | MR | Zbl

[3] Sato R., “A note on operator convergence for semigroups”, Comment. Math. Univ. Carolinae, 15:1 (1974), 127–129 | MR | Zbl

[4] Sato R., “A mean ergodic theorem for a contraction semigroup in Lebesgue space”, Studia Math., 54:3 (1976), 213–219 | Zbl

[5] Mukhamedov F. M., “Ergodicheskie svoistva sopryazhennykh kvadratichnykh operatorov”, Uzb. matem. zh., 1998, no. 1, 71–79 | MR

[6] Ganikhodzhaev N. N., Mukhamedov F. M., “O kvantovykh kvadratichnykh stokhasticheskikh protsessakh i nekotorye ergodicheskie teoremy dlya takikh protsessov”, Uzb. matem. zh., 1997, no. 3, 8–20 | MR | Zbl

[7] Lyubich Yu. I., “Osnovnye ponyatiya i teoremy evolyutsionnoi genetiki svobodnykh populyatsii”, UMN, 26:5 (1971), 51–116 | MR | Zbl

[8] Sarymsakov T. A., Ganikhodzhaev N. N., “Ergodicheskii printsip dlya kvadratichnykh protsessov”, Dokl. AN SSSR, 316:6 (1991), 1315–1319 | MR | Zbl

[9] Kesten H., “Quadratic trasformations: a model for population growth. I; II”, Adv. Appl. Prob., 1970, no. 2, 1–82 | DOI | MR | Zbl

[10] Lyubich Yu. I., Matematicheskie struktury v populyatsionnoi genetike, Naukova Dumka, Kiev, 1983

[11] Sarymsakov T. A., Ganikhodzhaev N. N., “Analiticheskie metody v teorii kvadratichnykh stokhasticheskikh operatorov”, Dokl. AN SSSR, 305:5 (1989), 1052–1056 | MR | Zbl

[12] Zimakov N. P., “Konechnomernye diskretnye lineinye stokhasticheskie sistemy uskoryayuschegosya vremeni i ikh prilozheniya k kvadratichnym stokhasticheskim dinamicheskim sistemam”, Matem. zametki, 59:5 (1996), 709–718 | MR | Zbl

[13] Bratteli U., Robinson D., Operatornye algebry i kvantovaya statisticheskaya mekhanika, Mir, M., 1982 | Zbl