Boson Fock representations of stochastic processes
Matematičeskie zametki, Tome 67 (2000) no. 1, pp. 3-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_2000_67_1_a0,
     author = {L. Accardi and T. Khida and V. V. Khtai},
     title = {Boson {Fock} representations of stochastic processes},
     journal = {Matemati\v{c}eskie zametki},
     pages = {3--14},
     publisher = {mathdoc},
     volume = {67},
     number = {1},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2000_67_1_a0/}
}
TY  - JOUR
AU  - L. Accardi
AU  - T. Khida
AU  - V. V. Khtai
TI  - Boson Fock representations of stochastic processes
JO  - Matematičeskie zametki
PY  - 2000
SP  - 3
EP  - 14
VL  - 67
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2000_67_1_a0/
LA  - ru
ID  - MZM_2000_67_1_a0
ER  - 
%0 Journal Article
%A L. Accardi
%A T. Khida
%A V. V. Khtai
%T Boson Fock representations of stochastic processes
%J Matematičeskie zametki
%D 2000
%P 3-14
%V 67
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2000_67_1_a0/
%G ru
%F MZM_2000_67_1_a0
L. Accardi; T. Khida; V. V. Khtai. Boson Fock representations of stochastic processes. Matematičeskie zametki, Tome 67 (2000) no. 1, pp. 3-14. http://geodesic.mathdoc.fr/item/MZM_2000_67_1_a0/

[1] Accardi L., Fagnola F., “Quaegebeur quantum stochastic calculus”, J. Funct. Anal., 104 (1992), 149–197 ; Volterra preprint No 18, 1990 | DOI | MR | Zbl

[2] Bhat B. V. R., Fagnola F., Sinha B., “On quantum extensions of semigroups of Brownian motion on a half-line”, Russian J. of Math. Phys., 4:3 (1996), 13–28 | MR | Zbl

[3] Chebotarev A. M., “Minimal solution in classical and quantum stochastics”, Quantum Probability and Related Topics, 7, World Scientific, Singapore, 1992, 79–97 | MR

[4] Fagnola F., Monte R., “On quantum extension of the semigroup of Bessel process quantum extensions of semigroups”, Math. Notes, 60:4 (1996), 519–537 | DOI | MR | Zbl

[5] Accardi L., Mohari A., “On the structure of classical and quantum flows”, Journ. Funct. Anal., 1996 ; Volterra Preprint No 167, 1994 | MR

[6] Hida T., Hitsuda M., Gaussian Processes, Amer. Math. Soc., Providence, R. I., 1993

[7] Hida T., Brownian Motion, Springer-Verlag, New York, 1980 | Zbl

[8] Kolmogorov A. N., Fomin S. V., Introductory Real Analysis, Dover Publications, New York, 1970

[9] Hoffman K., Banach Spaces of Analytic Functions, Prentice-Hall, 1962 | Zbl

[10] Htay W. W., “Optimalities for random functions: Lee–Wiener's network and non-canonical representation of stationary Gaussian processes”, Nagoya Math. J., 149 (1998), 9–17 | MR | Zbl