Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2000_67_1_a0, author = {L. Accardi and T. Khida and V. V. Khtai}, title = {Boson {Fock} representations of stochastic processes}, journal = {Matemati\v{c}eskie zametki}, pages = {3--14}, publisher = {mathdoc}, volume = {67}, number = {1}, year = {2000}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2000_67_1_a0/} }
L. Accardi; T. Khida; V. V. Khtai. Boson Fock representations of stochastic processes. Matematičeskie zametki, Tome 67 (2000) no. 1, pp. 3-14. http://geodesic.mathdoc.fr/item/MZM_2000_67_1_a0/
[1] Accardi L., Fagnola F., “Quaegebeur quantum stochastic calculus”, J. Funct. Anal., 104 (1992), 149–197 ; Volterra preprint No 18, 1990 | DOI | MR | Zbl
[2] Bhat B. V. R., Fagnola F., Sinha B., “On quantum extensions of semigroups of Brownian motion on a half-line”, Russian J. of Math. Phys., 4:3 (1996), 13–28 | MR | Zbl
[3] Chebotarev A. M., “Minimal solution in classical and quantum stochastics”, Quantum Probability and Related Topics, 7, World Scientific, Singapore, 1992, 79–97 | MR
[4] Fagnola F., Monte R., “On quantum extension of the semigroup of Bessel process quantum extensions of semigroups”, Math. Notes, 60:4 (1996), 519–537 | DOI | MR | Zbl
[5] Accardi L., Mohari A., “On the structure of classical and quantum flows”, Journ. Funct. Anal., 1996 ; Volterra Preprint No 167, 1994 | MR
[6] Hida T., Hitsuda M., Gaussian Processes, Amer. Math. Soc., Providence, R. I., 1993
[7] Hida T., Brownian Motion, Springer-Verlag, New York, 1980 | Zbl
[8] Kolmogorov A. N., Fomin S. V., Introductory Real Analysis, Dover Publications, New York, 1970
[9] Hoffman K., Banach Spaces of Analytic Functions, Prentice-Hall, 1962 | Zbl
[10] Htay W. W., “Optimalities for random functions: Lee–Wiener's network and non-canonical representation of stationary Gaussian processes”, Nagoya Math. J., 149 (1998), 9–17 | MR | Zbl