Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1999_66_6_a7, author = {A. G. Myasnikov}, title = {Weak amenability components of $L_1(G)$-modules, amenable groups, and an ergodic theorem}, journal = {Matemati\v{c}eskie zametki}, pages = {879--886}, publisher = {mathdoc}, volume = {66}, number = {6}, year = {1999}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1999_66_6_a7/} }
A. G. Myasnikov. Weak amenability components of $L_1(G)$-modules, amenable groups, and an ergodic theorem. Matematičeskie zametki, Tome 66 (1999) no. 6, pp. 879-886. http://geodesic.mathdoc.fr/item/MZM_1999_66_6_a7/
[1] Myasnikov A. G., “Amenabelnye banakhovy $L_1(G)$-moduli, invariantnye srednie i regulyarnost v smysle Arensa”, Izv. vuzov. Matem., 1993, no. 2, 72–80 | MR | Zbl
[2] Khyuitt E., Ross K., Abstraktnyi garmonicheskii analiz. T. 2. Struktura i analiz kompaktnykh grupp. Analiz na lokalno kompaktnykh abelevykh gruppakh, Mir, M., 1975
[3] Arens R., “The adjoint of a bilinear operation”, Proc. Amer. Math. Soc., 2 (1951), 839–848 | DOI | MR | Zbl
[4] Emerson W. R., “Characterizations of amenable groups”, Trans. Amer. Math. Soc., 241 (1978), 183–194 | DOI | MR | Zbl
[5] Greenleaf F. P., “Ergodic theorems and the construction of summing sequences in amenable locally compact groups”, Comm. Pure Appl. Math., 26 (1973), 29–46 | DOI | MR | Zbl
[6] Dreseler B., Schempp W., “On the Charshiladze–Lozinski theorem for compact topological groups and homogeneous spaces”, Manuscripta Math., 13 (1974), 321–337 | DOI | MR
[7] Paterson A. L. T., “Amenability and translation experiments”, Canad. J. Math., 35 (1983), 49–58 | MR | Zbl