Weak amenability components of $L_1(G)$-modules, amenable groups, and an ergodic theorem
Matematičeskie zametki, Tome 66 (1999) no. 6, pp. 879-886.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1999_66_6_a7,
     author = {A. G. Myasnikov},
     title = {Weak amenability components of $L_1(G)$-modules, amenable groups, and an ergodic theorem},
     journal = {Matemati\v{c}eskie zametki},
     pages = {879--886},
     publisher = {mathdoc},
     volume = {66},
     number = {6},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1999_66_6_a7/}
}
TY  - JOUR
AU  - A. G. Myasnikov
TI  - Weak amenability components of $L_1(G)$-modules, amenable groups, and an ergodic theorem
JO  - Matematičeskie zametki
PY  - 1999
SP  - 879
EP  - 886
VL  - 66
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1999_66_6_a7/
LA  - ru
ID  - MZM_1999_66_6_a7
ER  - 
%0 Journal Article
%A A. G. Myasnikov
%T Weak amenability components of $L_1(G)$-modules, amenable groups, and an ergodic theorem
%J Matematičeskie zametki
%D 1999
%P 879-886
%V 66
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1999_66_6_a7/
%G ru
%F MZM_1999_66_6_a7
A. G. Myasnikov. Weak amenability components of $L_1(G)$-modules, amenable groups, and an ergodic theorem. Matematičeskie zametki, Tome 66 (1999) no. 6, pp. 879-886. http://geodesic.mathdoc.fr/item/MZM_1999_66_6_a7/

[1] Myasnikov A. G., “Amenabelnye banakhovy $L_1(G)$-moduli, invariantnye srednie i regulyarnost v smysle Arensa”, Izv. vuzov. Matem., 1993, no. 2, 72–80 | MR | Zbl

[2] Khyuitt E., Ross K., Abstraktnyi garmonicheskii analiz. T. 2. Struktura i analiz kompaktnykh grupp. Analiz na lokalno kompaktnykh abelevykh gruppakh, Mir, M., 1975

[3] Arens R., “The adjoint of a bilinear operation”, Proc. Amer. Math. Soc., 2 (1951), 839–848 | DOI | MR | Zbl

[4] Emerson W. R., “Characterizations of amenable groups”, Trans. Amer. Math. Soc., 241 (1978), 183–194 | DOI | MR | Zbl

[5] Greenleaf F. P., “Ergodic theorems and the construction of summing sequences in amenable locally compact groups”, Comm. Pure Appl. Math., 26 (1973), 29–46 | DOI | MR | Zbl

[6] Dreseler B., Schempp W., “On the Charshiladze–Lozinski theorem for compact topological groups and homogeneous spaces”, Manuscripta Math., 13 (1974), 321–337 | DOI | MR

[7] Paterson A. L. T., “Amenability and translation experiments”, Canad. J. Math., 35 (1983), 49–58 | MR | Zbl