Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1999_66_6_a4, author = {V. P. Maslov}, title = {Asymptotics as $N\to\infty$ for $N$ classical fermions and bosons}, journal = {Matemati\v{c}eskie zametki}, pages = {849--866}, publisher = {mathdoc}, volume = {66}, number = {6}, year = {1999}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1999_66_6_a4/} }
V. P. Maslov. Asymptotics as $N\to\infty$ for $N$ classical fermions and bosons. Matematičeskie zametki, Tome 66 (1999) no. 6, pp. 849-866. http://geodesic.mathdoc.fr/item/MZM_1999_66_6_a4/
[1] Bogolyubov N. N., Izbrannye trudy, T. 3, Naukova dumka, Kiev, 1971 | Zbl
[2] Berezin F. A., Metod vtorichnogo kvantovaniya, Nauka, M., 1965
[3] Maslov V. P., “Quasi-particles associated with isoenergetic manifolds corresponding to classical self-consistent fields, X”, Russian J. Math. Phys., 5:2 (1997), 273–278 | MR | Zbl
[4] Maslov V. P., “Deterministic quantum chaos for systems of bosons and fermions”, Russian J. Math. Phys., 5:4 (1997), 473–488 | MR | Zbl
[5] Maslov V. P., “Quasi-particles associated with Lagrangian manifolds corresponding to classical self-consistent fields, I”, Russian J. Math. Phys., 2:4 (1994), 527–534 | MR | Zbl
[6] Landau L. D., Lifshits I. M., Kvantovaya mekhanika. Nerelyativistkaya teoriya, GIFML, M., 1963
[7] Maslov V. P., Kompleksnyi metod VKB, Nauka, M., 1977
[8] Maslov V. P., “Ob odnom metode osredneniya dlya kvantovoi zadachi mnogikh tel”, Funktsion. analiz i ego prilozh., 33:4 (1999), 50–64 | MR | Zbl
[9] Maslov V. P., Ruuge A. E., “Para Laksa dlya uravnenii kharakteristik osrednennykh mnogochastichnykh operatorov”, Matem. zametki, 66:5 (1999), 793–796 | MR
[10] Bogolyubov N. N., Shirkov D. V., Kvantovye polya, Nauka, M., 1980 | Zbl