Asymptotics as $N\to\infty$ for $N$ classical fermions and bosons
Matematičeskie zametki, Tome 66 (1999) no. 6, pp. 849-866.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1999_66_6_a4,
     author = {V. P. Maslov},
     title = {Asymptotics as $N\to\infty$ for $N$ classical fermions and bosons},
     journal = {Matemati\v{c}eskie zametki},
     pages = {849--866},
     publisher = {mathdoc},
     volume = {66},
     number = {6},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1999_66_6_a4/}
}
TY  - JOUR
AU  - V. P. Maslov
TI  - Asymptotics as $N\to\infty$ for $N$ classical fermions and bosons
JO  - Matematičeskie zametki
PY  - 1999
SP  - 849
EP  - 866
VL  - 66
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1999_66_6_a4/
LA  - ru
ID  - MZM_1999_66_6_a4
ER  - 
%0 Journal Article
%A V. P. Maslov
%T Asymptotics as $N\to\infty$ for $N$ classical fermions and bosons
%J Matematičeskie zametki
%D 1999
%P 849-866
%V 66
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1999_66_6_a4/
%G ru
%F MZM_1999_66_6_a4
V. P. Maslov. Asymptotics as $N\to\infty$ for $N$ classical fermions and bosons. Matematičeskie zametki, Tome 66 (1999) no. 6, pp. 849-866. http://geodesic.mathdoc.fr/item/MZM_1999_66_6_a4/

[1] Bogolyubov N. N., Izbrannye trudy, T. 3, Naukova dumka, Kiev, 1971 | Zbl

[2] Berezin F. A., Metod vtorichnogo kvantovaniya, Nauka, M., 1965

[3] Maslov V. P., “Quasi-particles associated with isoenergetic manifolds corresponding to classical self-consistent fields, X”, Russian J. Math. Phys., 5:2 (1997), 273–278 | MR | Zbl

[4] Maslov V. P., “Deterministic quantum chaos for systems of bosons and fermions”, Russian J. Math. Phys., 5:4 (1997), 473–488 | MR | Zbl

[5] Maslov V. P., “Quasi-particles associated with Lagrangian manifolds corresponding to classical self-consistent fields, I”, Russian J. Math. Phys., 2:4 (1994), 527–534 | MR | Zbl

[6] Landau L. D., Lifshits I. M., Kvantovaya mekhanika. Nerelyativistkaya teoriya, GIFML, M., 1963

[7] Maslov V. P., Kompleksnyi metod VKB, Nauka, M., 1977

[8] Maslov V. P., “Ob odnom metode osredneniya dlya kvantovoi zadachi mnogikh tel”, Funktsion. analiz i ego prilozh., 33:4 (1999), 50–64 | MR | Zbl

[9] Maslov V. P., Ruuge A. E., “Para Laksa dlya uravnenii kharakteristik osrednennykh mnogochastichnykh operatorov”, Matem. zametki, 66:5 (1999), 793–796 | MR

[10] Bogolyubov N. N., Shirkov D. V., Kvantovye polya, Nauka, M., 1980 | Zbl