Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1999_66_6_a12, author = {Yu. G. Shondin}, title = {Singular point perturbations of an odd operator in a $\mathbb Z_2$-graded space}, journal = {Matemati\v{c}eskie zametki}, pages = {924--940}, publisher = {mathdoc}, volume = {66}, number = {6}, year = {1999}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1999_66_6_a12/} }
Yu. G. Shondin. Singular point perturbations of an odd operator in a $\mathbb Z_2$-graded space. Matematičeskie zametki, Tome 66 (1999) no. 6, pp. 924-940. http://geodesic.mathdoc.fr/item/MZM_1999_66_6_a12/
[1] Albeverio S., Gestezi F., Khëeg-Kron R., Kholden Kh., Reshaemye modeli v kvantovoi mekhanike, Mir, M., 1991
[2] Shondin Yu. G., “Kvantovo-mekhanicheskie modeli v $\mathbb R^n$, assotsiirovannye s rasshireniem operatora energii v prostranstve Pontryagina”, TMF, 74:3 (1988), 331–344 | MR | Zbl
[3] van Diejen J. F., Tip A., “Scattering from generalized point interaction using selfadjoint extensions in Pontryagin spaces”, J. Math. Phys., 32:3 (1991), 630–641 | DOI | MR | Zbl
[4] Shondin Yu. G., “Vozmuscheniya na tonkikh mnozhestvakh vysokoi korazmernosti ellipticheskikh operatorov i teoriya rasshirenii v prostranstve s indefinitnoi metrikoi”, Issledovaniya po lineinym operatoram i teorii funktsii, Zapiski nauchn. seminarov POMI, 222, no. 23, Nauka, S.-Pb., 1995, 246–292
[5] Tsikon Kh., Frëze R., Kirsh V., Saimon B., Operatory Shrëdingera s prilozheniyami k kvantovoi mekhanike i globalnoi geometrii, Mir, M., 1990
[6] Borisov N. V., Müller W., Schrader R., “Relative index theorems and supersymmetric scattering theory”, Comm. Math. Phys., 114:3 (1988), 475–513 | DOI | MR | Zbl
[7] Berezin F. A., Vvedenie v algebru i analiz s antikommutiruyuschimi peremennymi, Izd. MGU, M., 1983
[8] Krein M. G., Langer G., “O defektnykh podprostranstvakh i obobschennykh rezolventakh ermitova operatora v prostranstve $\Pi _\kappa $”, Funktsion. analiz i ego prilozh., 5:2 (1971), 59–71 | MR | Zbl
[9] Kreĭn M. G., Langer H., “Some propositions on analytic matrix functions related to the theory of operators on the space $\Pi _\kappa $”, Acta Sci. Math. (Szeged), 43 (1981), 181–205 | MR | Zbl
[10] Albeverio S., Karwowski W., Koshmanenko V., “Square powers of singurlarly perturbed operators”, Math. Nachr., 31 (1995), 5–24 | DOI
[11] Berezin F. A., “O modeli Li”, Matem. sb., 60:4 (1963), 425–446 | MR | Zbl
[12] Azizov T. Ya., Iokhvidov I. S., Osnovy teorii lineinykh operatorov v prostranstvakh s indefinitnoi metrikoi, Nauka, M., 1986
[13] Dijksma A., de Snoo H. S. V., “Symmetric and self-adjoint relations in Kreĭn spaces, I”, Oper. Theory Adv. Appl., 24 (1987), 145–166 | MR | Zbl
[14] Kochubei A. N., “O simmetricheskikh operatorakh, kommutiruyuschikh s semeistvom unitarnykh operatorov”, Funktsion. analiz i ego prilozh., 13:4 (1979), 77–78 | MR
[15] Daho K., Langer H., “Sturm–Liouville operators with indefinite weight function”, Proc. Roy. Soc. Edinburgh Sect. A, 78 (1977), 161–191 | MR | Zbl