Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1999_66_5_a2, author = {A. V. Karasev}, title = {An infinite-dimensional 4-manifold of finite cohomological dimension with the continuum hypothesis}, journal = {Matemati\v{c}eskie zametki}, pages = {664--670}, publisher = {mathdoc}, volume = {66}, number = {5}, year = {1999}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1999_66_5_a2/} }
TY - JOUR AU - A. V. Karasev TI - An infinite-dimensional 4-manifold of finite cohomological dimension with the continuum hypothesis JO - Matematičeskie zametki PY - 1999 SP - 664 EP - 670 VL - 66 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1999_66_5_a2/ LA - ru ID - MZM_1999_66_5_a2 ER -
A. V. Karasev. An infinite-dimensional 4-manifold of finite cohomological dimension with the continuum hypothesis. Matematičeskie zametki, Tome 66 (1999) no. 5, pp. 664-670. http://geodesic.mathdoc.fr/item/MZM_1999_66_5_a2/
[1] Fedorchuk V. V., “Differentsiruemoe mnogoobrazie s nesovpadayuschimi razmernostyami pri CH”, Matem. sb., 186:1 (1995), 149–160 | MR | Zbl
[2] Fedorchuk V. V., “O transfinitnoi i kogomologicheskoi razmernostyakh 4-mnogoobrazii”, Tr. MIAN, 212, Nauka, M., 1996, 193–212 | MR
[3] Aleksandrov P. S., Pasynkov B. A., Vvedenie v teoriyu razmernosti, Nauka, M., 1973
[4] Alexandroff P. S., “On the dimension of normal spaces”, Proc. Roy. Soc. London. A, 189 (1947), 11–39 | DOI | MR | Zbl
[5] Anderson R. D., “Monotone interior dimension-raising mappings”, Duke Math. J., 19 (1952), 359–366 | DOI | MR | Zbl
[6] Kuzminov V. I., “Gomologicheskaya teoriya razmernosti”, UMN, 23:5(143) (1968), 3–49 | MR | Zbl
[7] Anderson R. D., “A continuous curve admitting monotone open maps onto all locally connnected metric continua”, Bull. Amer. Math. Soc., 62 (1956), 265
[8] Wilson D. C., “Open mappings of the universal curve onto continuous curves”, Trans. Amer. Math. Soc., 168 (1972), 497–515 | DOI | MR | Zbl
[9] Dranishnikov A. N., “O probleme P. S. Aleksandrova”, Matem. sb., 135 (1988), 551–557 | Zbl