Polynomials that are orthogonal on two symmetric intervals
Matematičeskie zametki, Tome 66 (1999) no. 5, pp. 796-800.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1999_66_5_a16,
     author = {N. P. Fadeev},
     title = {Polynomials that are orthogonal on two symmetric intervals},
     journal = {Matemati\v{c}eskie zametki},
     pages = {796--800},
     publisher = {mathdoc},
     volume = {66},
     number = {5},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1999_66_5_a16/}
}
TY  - JOUR
AU  - N. P. Fadeev
TI  - Polynomials that are orthogonal on two symmetric intervals
JO  - Matematičeskie zametki
PY  - 1999
SP  - 796
EP  - 800
VL  - 66
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1999_66_5_a16/
LA  - ru
ID  - MZM_1999_66_5_a16
ER  - 
%0 Journal Article
%A N. P. Fadeev
%T Polynomials that are orthogonal on two symmetric intervals
%J Matematičeskie zametki
%D 1999
%P 796-800
%V 66
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1999_66_5_a16/
%G ru
%F MZM_1999_66_5_a16
N. P. Fadeev. Polynomials that are orthogonal on two symmetric intervals. Matematičeskie zametki, Tome 66 (1999) no. 5, pp. 796-800. http://geodesic.mathdoc.fr/item/MZM_1999_66_5_a16/

[1] Suetin P. K., Klassicheskie ortogonalnye mnogochleny, Nauka, M., 1979 | Zbl

[2] Fadeev N. P., Izv. vuzov. Matem., 1979, no. 5(168), 99–103 | MR

[3] Segë G., Ortogonalnye mnogochleny, Fizmatgiz, M., 1962

[4] Sonin N. Ya., Issledovaniya o tsilindricheskikh funktsiyakh i spetsialnykh polinomakh, Gostekhizdat, M., 1954