Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1999_66_5_a12, author = {M. F. Sukhinin}, title = {On the {Bellman} approach to optimal control theory}, journal = {Matemati\v{c}eskie zametki}, pages = {770--776}, publisher = {mathdoc}, volume = {66}, number = {5}, year = {1999}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1999_66_5_a12/} }
M. F. Sukhinin. On the Bellman approach to optimal control theory. Matematičeskie zametki, Tome 66 (1999) no. 5, pp. 770-776. http://geodesic.mathdoc.fr/item/MZM_1999_66_5_a12/
[1] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1976 | Zbl
[2] Sukhinin M. F., “Ob odnom analoge uravneniya Bellmana”, Matem. zametki, 38:2 (1985), 265–269 | MR | Zbl
[3] Sukhinin M. F., Izbrannye glavy nelineinogo analiza, Izd-vo Rossiiskogo universiteta druzhby narodov, M., 1992
[4] Boltyanskii V. G., “Dostatochnye usloviya optimalnosti i obosnovanie metoda dinamicheskogo programmirovaniya”, Izv. AN SSSR. Ser. matem., 28:3 (1964), 481–514 | MR
[5] Crandall M. G., Lions P.-L., “Viscosity solutions of Hamilton–Jacobi equations”, Trans. Amer. Math. Soc., 277 (1983), 1–42 | DOI | Zbl
[6] Subbotin A. I., Minimaksnye neravenstva i uravneniya Gamiltona–Yakobi, Nauka, M., 1991
[7] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974 | Zbl
[8] Li E. V., Markus L., Osnovy teorii optimalnogo upravleniya, Nauka, M., 1972